积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(149)Python(149)PyWebIO(65)Django(2)Flask(1)

语言

全部中文(简体)(88)英语(60)中文(繁体)(1)

格式

全部PDF文档 PDF(87)其他文档 其他(61)DOC文档 DOC(1)
 
本次搜索耗时 0.225 秒,为您找到相关结果约 149 个.
  • 全部
  • 后端开发
  • Python
  • PyWebIO
  • Django
  • Flask
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hello 算法 1.0.0b4 Python版

    靳宇栋(Krahets) Release 1.0.0b4 2023‑07‑26 序 两年前,我在力扣上分享了《剑指 Offer》系列题解,受到了许多朋友的喜爱与支持。在此期间,我回答了众 多读者的评论问题,其中最常见的一个问题是“如何入门学习算法”。我逐渐也对这个问题产生了浓厚的兴 趣。 两眼一抹黑地刷题似乎是最受欢迎的方法,简单直接且有效。然而,刷题就如同玩“扫雷”游戏,自学能力 若您是算法大神,我们期待收到您的宝贵建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容包括: ‧ 复杂度分析:数据结构和算法的评价维度,算法效率的评估方法。时间复杂度、空间复杂度的推算方 法、常见类型、示例等。 ‧ 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、散列表、树、堆、图等数据 结构的定义、优缺点 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 作为一本入门教程,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 Figure 0‑7. 算法学习路线 0.3. 小结
    0 码力 | 329 页 | 27.34 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Python版

    如果您是「算法大佬」,希望可以得到你的宝贵意见建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树 轮以上后,往往就能牢记于心了。 3. 搭建知识体系。在学习方面,可以阅读算法专栏文章、解题框架、算法教材,不断地丰富知识体系。在 刷题方面,可以开始采用进阶刷题方案,例如按专题分类、一题多解、一解多题等,相关刷题心得可以 在各个社区中找到。 作为一本入门教程,本书内容主要对应“第一阶段”,致力于帮助你更高效地开展第二、三阶段的学习。 Figure 0‑2. 算法学习路线 0.2.2. 行文风格约定 1.1. 算法评价维度 在开始学习算法之前,我们首先要想清楚算法的设计目标是什么,或者说,如何来评判算法的好与坏。整体上 看,我们设计算法时追求两个层面的目标。 1. 找到问题解法。算法需要能够在规定的输入范围下,可靠地求得问题的正确解。 2. 寻求最优解法。同一个问题可能存在多种解法,而我们希望算法效率尽可能的高。 换言之,在可以解决问题的前提下,算法效率则是主要评价维度,包括: ‧ 时间效率,即算法的运行速度的快慢。
    0 码力 | 186 页 | 15.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Python版

    如果您是「算法大佬」,希望可以得到你的宝贵意见建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 方法、常见类型、示例等。 ‧ 数据结构:常用的基本数据类型,数据在内存中的存储方式、数据结构分类方法。数组、链表、栈、队列、 散列表、树 轮以上后,往往就能牢记于心了。 3. 搭建知识体系。在学习方面,可以阅读算法专栏文章、解题框架、算法教材,不断地丰富知识体系。在 刷题方面,可以开始采用进阶刷题方案,例如按专题分类、一题多解、一解多题等,相关刷题心得可以 在各个社区中找到。 作为一本入门教程,本书内容主要对应“第一阶段”,致力于帮助你更高效地开展第二、三阶段的学习。 Figure 0‑2. 算法学习路线 0.2.2. 行文风格约定 1.1. 算法评价维度 在开始学习算法之前,我们首先要想清楚算法的设计目标是什么,或者说,如何来评判算法的好与坏。整体上 看,我们设计算法时追求两个层面的目标。 1. 找到问题解法。算法需要能够在规定的输入范围下,可靠地求得问题的正确解。 2. 寻求最优解法。同一个问题可能存在多种解法,而我们希望算法效率尽可能的高。 换言之,在可以解决问题的前提下,算法效率则是主要评价维度,包括: ‧ 时间效率,即算法的运行速度的快慢。
    0 码力 | 178 页 | 14.67 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Python版

    或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度、空间复杂度的推算方法、常见类型、示 例等。 ‧ 数据结构:基本数据类型,数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 如图 0‑7 所示,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 第 0 章 前言 hello‑algo.com 8 图 我们可以将数据结构与算法类比为拼装积木,积木代表数据,积木的形状和连接方式代表数据结构,拼 装积木的步骤则对应算法。 16 第 2 章 复杂度分析 � 复杂度分析犹如浩瀚的算法宇宙中的时空向导。 它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。 第 2 章 复杂度分析 hello‑algo.com 17 2.1 算法效率评估 在算法设计中,我们先后追求以下两个层面的目标。 1. 找到问题解法:算法
    0 码力 | 361 页 | 30.64 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Python版

    者一起参与创作。 � 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 轮的重复后,就能将其牢记在心。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo.com 9 图 积木代表数据,积木的形状和连接方式等代表数据结构, 拼装积木的步骤则对应算法。 17 第 2 章 复杂度分析 � 复杂度分析犹如浩瀚的算法宇宙中的时空向导。 它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。 第 2 章 复杂度分析 hello‑algo.com 18 2.1 算法效率评估 在算法设计中,我们先后追求以下两个层面的目标。 1. 找到问题解法:算法
    0 码力 | 362 页 | 17.54 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Python版

    议,或者一起参与创作。 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo.com 9 图 积木的形状和连接方式等代表数据结构, 拼装积木的步骤则对应算法。 17 第 2 章 复杂度分析 Abstract 复杂度分析犹如浩瀚的算法宇宙中的时空向导。 它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。 第 2 章 复杂度分析 hello‑algo.com 18 2.1 算法效率评估 在算法设计中,我们先后追求以下两个层面的目标。 1. 找到问题解法:算法
    0 码力 | 364 页 | 18.42 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Python 版

    议,或者一起参与创作。 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 例等。 ‧ 数据结构:基本数据类型和数据结构的分类方法。数组、链表、栈、队列、哈希表、树、堆、图等数据 结构的定义、优缺点、常用操作、常见类型、典型应用、实现方法等。 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www.hello‑algo.com 9 越完备、经验越多,分析 问题就会越深入,问题就能被解决得更优雅。 17 第 2 章 复杂度分析 Abstract 复杂度分析犹如浩瀚的算法宇宙中的时空向导。 它带领我们在时间与空间这两个维度上深入探索,寻找更优雅的解决方案。 第 2 章 复杂度分析 www.hello‑algo.com 18 2.1 算法效率评估 在算法设计中,我们先后追求以下两个层面的目标。 1. 找到问题解
    0 码力 | 364 页 | 18.43 MB | 9 月前
    3
  • pdf文档 1_丁来强_开源AIOps数据中台搭建与Python的作用

    diagnostic 辅助根因分析 root cause analysis ⾃自动模式识别 事件关联 通过关联、知识图谱获 得可能原因 基于模式的预测 AIOps增强分析与⾏行行动能⼒力力,挡住更更多⼯工单 2 ⼯工程难点 数据采集、数据中台、智能算法、⾃自动化等 AIOps系统(常规层次) AIOps系统架构 • 场景应⽤用 • 智能监测系统 • ⾃自动化系统 • ⼯工单知识库 海海量量多样数据的存储/索引: • 时序指标数据、⽂文本数据、⽇日志、⽹网络数据、Tracking等 • 各种分析的⽀支持: • 流式分析:流式或微批实时处理理 • 统计关联分析:多维度的实时关联统计与分析⽀支持,⽀支持交互式add-hoc⽅方式 • 数据治理理: • 数据加⼯工:通⽤用数据模型;多维机器器数据、半结构化的规整、各种第三⽅方数据关联 • 数据⽣生命周期管 机器器学习对分析增强的⽅方向 增强点 描述 统计性分析 基于IT实体与数据,在单维、多维变量量上的关联、聚类、分类和推断。 ⾃自动模式发现与预测 基于历史数据⾃自动探索出数学与结构化模式,并⽤用于各种可能维度的预测。 异常检测 基于模式识别正常⾏行行为与异常⾏行行为。 根因判断 修剪⽹网络并提供有效问题的关系链接。 规范性建议 对问题进⾏行行分类,并基于过去⽅方案提供有效建议。 拓拓扑 提供拓拓扑能⼒力力强化上下⽂文与前述的准确度
    0 码力 | 48 页 | 17.54 MB | 1 年前
    3
  • pdf文档 Python 标准库参考指南 3.8.20

    Python 一同发行的标准库。它 还描述了通常包含在 Python 发行版中的一些可选组件。 Python 标准库非常庞大,所提供的组件涉及范围十分广泛,正如以下内容目录所显示的。这个库包含了多 个内置模块 (以 C 编写),Python 程序员必须依靠它们来实现系统级功能,例如文件 I/O,此外还有大量以 Python 编写的模块,提供了日常编程中许多问题的标准解决方案。其中有些模块经过专门设计,通过将特定 可能有更 大的元素。 len(view) 与tolist 的长度相等。如果 view.ndim = 0,则其长度为 1。如果 view.ndim = 1,则其长度等于 view 中元素的数量。对于更高的维度,其长度等于表示 view 的嵌套列表的长度。 itemsize 属性可向你给出单个元素所占的字节数。 memoryview 支持通过切片和索引访问其元素。一维切片的结果将是一个子视图: >>> 整数构成的元组 进行索引,并返回具有正确类型的单个 元素。一维内存视图可以使用一个整数或由一个整数构成的元 组进行索引。多维内存视图可以使用由恰好 ndim 个整数构成的元素进行索引,ndim 即其维度。零维内 存视图可以使用空元组进行索引。 这里是一个使用非字节格式的例子: 4.8. 二进制序列类型 --- bytes, bytearray, memoryview 65 The Python
    0 码力 | 2052 页 | 9.74 MB | 9 月前
    3
  • pdf文档 Python 标准库参考指南 3.10.15

    Python 一同发行的标准库。它 还描述了通常包含在 Python 发行版中的一些可选组件。 Python 标准库非常庞大,所提供的组件涉及范围十分广泛,正如以下内容目录所显示的。这个库包含了多 个内置模块 (以 C 编写),Python 程序员必须依靠它们来实现系统级功能,例如文件 I/O,此外还有大量以 Python 编写的模块,提供了日常编程中许多问题的标准解决方案。其中有些模块经过专门设计,通过将特定 可能有更大的元素。 len(view) 与tolist 的长度相等。如果 view.ndim = 0,则其长度为 1。如果 view.ndim = 1,则其长度等于 view 中元素的数量。对于更高的维度,其长度等于表示 view 的嵌套列表的长度。 itemsize 属性可向你给出单个元素所占的字节数。 memoryview 支持通过切片和索引访问其元素。一维切片的结果将是一个子视图: >>> 整数构成的元组 进行索引,并返回具有正确类型的单个 元素。一维内存视图可以使用一个整数或由一个整数构成的元 组进行索引。多维内存视图可以使用由恰好 ndim 个整数构成的元素进行索引,ndim 即其维度。零维内 存视图可以使用空元组进行索引。 这里是一个使用非字节格式的例子: >>> import array >>> a = array.array('l', [-11111111, 22222222
    0 码力 | 2207 页 | 10.45 MB | 9 月前
    3
共 149 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 15
前往
页
相关搜索词
Hello算法1.00b4Python0b20b10b51.11.2简体中文简体中文丁来开源AIOps数据中台搭建作用标准参考指南3.8203.1015
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩