python3学习手册
python3学习手册 简介: Python官网: h�ps://www.python.org Python由Guido van Rossum于1989年底发明,于1991年发行第一版, Python源代码遵循GPL协议 Python是一种解释型、面向对象、动态数据类型、可交互的语言 python2.0于2000-10-16发布,于2020年1月1日停止更新2.x版本, Python-2.7成为最后一个py0 码力 | 213 页 | 3.53 MB | 1 年前35 Python深度学习实践
深度学习实践 from Tensorflow to AI-Hub 王顺 – Google Cloud 目录 CONTENTS 从零开始 初步修改 业务升级 实践指南 1 从hello world开始 以深度学习的第一个案例MNIST为例 学习Tensorflow框架的使用及代码编写风格 理解TF Mac CPU运行结果 GPU运行结果 TPU运行结果 TPU的创建和使用 TPUs • https://www.tensorflow.org/tutorials/distribute/tpu_custom_training 3 业务升级 以上已经针对MNIST做了一些深入学习 接下来思考如何满足实际业务上的需要 LEGO积木 22 Component: ExampleGen examples = csv_input(os.path.join(data_root JS 5. Pipeline Kubeflow Runtime Airflow Runtime 6. 协作 Takeaways • 在不同设备上执行训练 • 基于AI产品的全流程 • 深度学习实践: • 质量 • 效率 • 专注 • 稳定 • 参与和行动!!! THANK YOU 希望对大家有所帮助和启发0 码力 | 38 页 | 4.85 MB | 1 年前34 Python机器学习性能优化
Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free0 码力 | 38 页 | 2.25 MB | 1 年前33 基于Azure的Python机器学习 王大伟
基于Azure的Python机器学习 平安金融壹账通大数据研究院 微软MVP 王大伟 目录 CONTENTS Azure与Python 如何用Azure完成机器学习 Azure与自动机器学习 Azure的相关学习资料 Azure与Python 日渐流行的Python TIOBE给出的排行榜是具有权威性质的,是判断语言流行趋势的指标。 TIOBE排行榜的网址是:https://tiobe com/tiobe-index/ 日渐流行的Python 日渐流行的Python 日渐流行的Python 为什么用Python完成机器学习 Python的优势:易学习、大量不断更新的各领域库、尤其适合完成机器学习相关任务。 Python机器学习相关库介绍: Sklearn机器学习地图 Azure是什么? Azure 是一个不断扩展的云计算服务集合。通过 Azure,公司和组织可以加快发展步伐,提高工作 。 如何用Azure完成机器学习 Azure机器学习 进入Azure服务页面 :https://portal.azure.com/#home Azure机器学习 通过点击“所有服务”,我们可以看到Azure可提供的服务非常多 找到我们本次需要的“AI + 机器学习” Azure机器学习 在“机器学习服务工作区”中可以看到已有的服务 Azure机器学习 选择“添加”按钮,填写相关信息0 码力 | 31 页 | 3.69 MB | 1 年前3许振影 Python 深度学习技术在医学领域的应用与前景
Python深度学习技术在医 疗领域的应用与前景 许振影 目录 CONTENTS Python的数据科学生态 深度学习在医疗领域应用实践 Python的数据科学生态 •Python的数据科学生态 •Python的数据科学生态 •Python的数据科学生态 Kdnuggets&Kaggle :Deep Learning Framework Power Scores 2018 深度学习 深度学习 在医疗领域应用实践 深度学习在医疗领域论文情况 Kwak G H J, Hui P. DeepHealth: Deep Learning for Health Informatics[J]. arXiv preprint arXiv:1909.00384, 2019. 机器视觉在医学领域应用 物理驱动 1898-1995 X光、超声、核磁共振 热成像、同位素成像 应用驱动 1990-0 码力 | 17 页 | 1.84 MB | 1 年前3PyConChina2022-上海-基于Python的深度学习框架设计与实现-刘凡平
基于Python的深度学习框 架设计与实现 主讲人: 刘凡平 介绍大纲 一、背景 二、原理:深度学习框架的一般性结构 三、设计 四、应用案例 五、思考 一、背景 深度学习框架是包含深度学习模型设计、训练和验证的一套标准接口、特性库和工具包,集成深度学习 的算法封装、数据调用以及计算资源的使用,同时面向开发者提供了开发界面和高效的执行平台,是算法工 程师的必备工具之一。 美国 美国互联网对AI底层技术战略性投入力度较大,但中国的AI产业主要受需求拉动,大多数人工智能 公司布局应用层。 一、背景:深度学习框架的演进 一、背景:深度学习框架的重要性 二、原理:深度学习框架结构 ����� ��������� � � � ����� ���������� ������� ��������� �� �� � � � ������� ������ ������ 决方案或一般性方法。 提供模型生命周期中 科配置的各类功能组件。 实现框架最基础、最 核心的功能,帮助开发者 屏蔽底层硬件技术细节。 三、设计:最小化的深度学习框架 从模型的设计者角度思考,一个模型设计的最小使用内容。 三、设计:最小MVP深度学习框架的层次逻辑 � � � � Datasets DataLoader ABCDataset ABCDataLoader � � � � ���0 码力 | 15 页 | 2.40 MB | 1 年前38 4 Deep Learning with Python 费良宏
深度学习 -用 PYTHON 开发你的智能应用 / , 费良宏 lianghon@amazon.com AWS Technical Evangelist 21 April 2016 关于我 工作:Amazon Web Services / Evangelist 7 年 Windows/ Internet/ Cloud @ 3 年 iOS/ Mobile App @ 1.5 年 Cloud Cloud Computing @ 技术关注: 云计算:架构、大数据、计算优化 机器学习:深度学习、自然语言处理 语言:Python、Go、Scala、Lua Web:爬虫 2016的目标:Web爬虫+深度学习+自然语言处理 = ? Microso� Apple AWS 今年最激动人心的事件? 2016.1.28 “Mastering the game of Go with deep 人工智能 VS. 机器学习 VS. 深度学习 人工智能发展的历史 四大宗师 Yann Lecun, Geoff Hinton, Yoshua Bengio, Andrew Ng 机器学习 机器学习是一门人工智能的科学。机器学习算法是一类从 数据中自动分析获得规律,并利用规律对未知数据进行预 测的算法 机器学习 计算机能够分辨出来他/她是谁吗? 机器学习 机器学习 基于过去的事实和数据,用来发现趋势和模式0 码力 | 49 页 | 9.06 MB | 1 年前31_丁来强_开源AIOps数据中台搭建与Python的作用
缺少持续改进(运维⼈人员⼤大部分时间忙于救⽕火) • ⼈人员学习速度跟不不上业务增⻓长和问题出现的速度 基本概念 • AIOps = Artificial Intelligence for IT Operations • 组合⼤大数据 + 机器器学习 + 分析来帮助IT运维: • 发现、预测、修复问题 ⼤大数据 机器器学习 分析 Garner:AIOps对IT运维的改进 ⼤大数据促进平台融合 IT运维⼈人员、开发⼈人员、数据⼯工程师、 • 安全运维、合规审计⼈人员、商务分析师 • Garner预测未来5年年: • AIOps会从功能演变成平台并落地 • 到2022年年,40%企业会使⽤用AIOps 机器器学习促进ITOps的主要⽅方式 降噪、去重 可视化与统计分析 增强描述性 descriptive 增加预测能⼒力力 proactive capabilities 增强排错 diagnostic oc⽅方式 • 数据治理理: • 数据加⼯工:通⽤用数据模型;多维机器器数据、半结构化的规整、各种第三⽅方数据关联 • 数据⽣生命周期管理理(时序数据的归并、变化数据更更新等) 机器器学习对分析增强的⽅方向 增强点 描述 统计性分析 基于IT实体与数据,在单维、多维变量量上的关联、聚类、分类和推断。 ⾃自动模式发现与预测 基于历史数据⾃自动探索出数学与结构化模式,并⽤用于各种可能维度的预测。0 码力 | 48 页 | 17.54 MB | 1 年前3Python的智能问答之路 张晓庆
训练数据 Ø 测试数据 Ø 评估数据 • 建模 Ø 输入输出? Ø 工作流? • 语言工具 Ø C++ Ø Python Ø Java Ø GO • 模型 Ø 统计模型 Ø 传统机器学习模型 Ø 深度学习模型 Ø 如何选择?是否组合? • 评估 Ø 评估指标 Ø 工具 • 迭代 Ø 策略? • 服务化 Ø 服务框架 Ø 性能 Ø 稳定性 各个击破-业务 u 想给小孩报名英文课,不清楚课程内 宝宝有点咳嗽怎么食疗 退黄疸用什么药 怎么能知道取货码 各个击破-迭代 • badcase分析 • 设计有效特征 Ø IDF加权 • 强化特征语义表示能力 Ø 词袋模型语义表示能力弱 Ø 预训练词向量能提升模型的语义表示能力 Ø 深度学习网络让句子产生交互,能进一步提升语义表 示能力 Ø 领域内数据fine-tune是有效的 • 拥抱业界新兴模型 Ø bert+MTL 方法 资源充分利用 • 服务框架 Ø http:短链接,简单,开发方便 Ø grpc:长链接,安全性 3 Python开发的利与弊 优势总结、缺点举例 机器学习库scikit learn 计算库numpy 文本挖掘库gensim 深度学习库tensorflow等 强大的第三方 工具库 支持其它语言 优势互补 开发便捷 调试简单 语法简单 易用性强 无需复杂数据结构即可快速搭建0 码力 | 28 页 | 2.60 MB | 1 年前3Hello 算法 1.0.0b4 Python版
0.0b4 2023‑07‑26 序 两年前,我在力扣上分享了《剑指 Offer》系列题解,受到了许多朋友的喜爱与支持。在此期间,我回答了众 多读者的评论问题,其中最常见的一个问题是“如何入门学习算法”。我逐渐也对这个问题产生了浓厚的兴 趣。 两眼一抹黑地刷题似乎是最受欢迎的方法,简单直接且有效。然而,刷题就如同玩“扫雷”游戏,自学能力 强的同学能够顺利地将地雷逐个排掉,而基础不足的同 Reanon, sjinzh 完 成(按照首字母顺序排列)。感谢他们付出的时间与精力,正是他们确保了各语言代码的规范与统一。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读。” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 i . . . 322 1 0. 前言 0.1. 关于本书 本项目旨在创建一本开源免费、新手友好的数据结构与算法入门教程。 ‧ 全书采用动画图解,结构化地讲解数据结构与算法知识,内容清晰易懂、学习曲线平滑。 ‧ 算法源代码皆可一键运行,支持 Java, C++, Python, Go, JS, TS, C#, Swift, Zig 等语言。 ‧ 鼓励读者在章节讨论区互帮互助、共同进步,提问与评论通常可在两日内得到回复。0 码力 | 329 页 | 27.34 MB | 1 年前3
共 66 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7