Go持续集成
• 崔英杰 Go的持续集成 实践分享 简单 激情 速度快 聚焦 极致 可信赖 什么是持续集成 持续集成 是一种软件开发实践。在持续集 成中,团队成员频繁集成他们的工作成果, 一般每人每天至少集成一次,也可以多次。 每次集成会经过自动构建(包括自动测试) 的 检验,以尽快发现集成错误。 — Martin Fowler 简单 激情 速度快 聚焦 极致 可信赖 持续集成的好处 1. 快速发现修复错误 持续发布 4. 减少代码审核时间 5. 减少对个体依赖 简单 激情 速度快 聚焦 极致 可信赖 石器时代 简单 激情 速度快 聚焦 极致 可信赖 分享惨案经历 1. 无单元测试,手工集成测试 2. 测试用例300多个,需要一个星期 3. 面对业务压力,规则形同虚设 4. 深夜事故 简单 激情 速度快 聚焦 极致 可信赖 原有开发体系的问题 1. 迭代周期漫长 2. 质量缺乏保障 2. 开发过程透明度无改善 3. 代码审核形同虚设 4. 部署过程依然没有完全自动化 简单 激情 速度快 聚焦 极致 可信赖 简单 激情 速度快 聚焦 极致 可信赖 持续…… 1.持续集成 Continuous Integration(CI) 2.持续发布 Continuous Delivery 3.持续部署 Continuous Deployment 简单 激情 速度快 聚焦0 码力 | 39 页 | 10.74 MB | 1 年前3基于Go的大数据平台-党合萱
基于Go的⼤大数据平台 七⽜牛云—党合萱 什什么是Pandora 简单 · 可信赖 Pandora架构图 Export Service API / Portal / 消息 消息 计算 计算 消息 导出任务 导出任务 导出任务 导出任务 导出任务 计算 消息 对象存储服务 HTTP MongoDB 时序数据库 ⽇日志检索服务 XSpark Report Studio 简单 · 可信赖 内容提要 • 系统设计分析与架构 • 多种上下游适配 • ⾼高吞吐/低延迟问题探究 • ⾼高可⽤用与⽔水平扩展 • ⾃自动化运维 • Go的应⽤用 简单 · 可信赖 系统设计分析与架构 构建系统的挑战 export service系统全貌 简单 · 可信赖 数据预取 • export server在向下游推数据的时候预先从上游拉数据回来,保证⽹网络最⼤大的利利⽤用率,同时也减⼩小了了等待时间,提升导出效率。 • 预取时如果⽆无数据可取,则休眠1s再取数据,既然没有数据则休眠时间加倍……⼀一直到32s为⽌止,过程中如果取到数据,则休眠时间重置为 1s,有效减少对底层存储的请求数量量。 简单 · 可信赖 数据推送协议优化 • 优化export0 码力 | 34 页 | 1.26 MB | 1 年前3Go在数据库中间件的应用
Go在数据库中间件的应用 基础架构组/刘延允 liuyun827@foxmail.com 2017年9月 1 关于我 • 刘延允——酷狗音乐,基础架构组 • 数据库变更通知服务 • 酷狗消息队列 • 酷狗数据库中间件 • 主要工作:分布式存储、高可用、数据库 • 两年通信设备开发经验,四年互联网 • 五年C/C++使用经验,一年Golang 2 CONTENTS • 程序开发的需求 • 强大的标准库、丰富的第三方库、go test、pprof • 自动内存管理;内存泄漏与野指针是C/C++语言开发者的噩梦 • Go routine + channel;简单的并发与简易的数据同步 5 系统整体方案 mysql-group proxy proxy mysqld(M) mysqld(S) mysqld(S) mysql-group mysql-group mysql-group 主备自动切换(主-主模式)。 • 分表设计——按照Hash分表 • 分表设计——按照范围分表(年、月、日、整形) • 数据库表在多个mysql实例间平滑扩容 • 大表拆分为多个子表情况下的平滑扩容 7 系统整体方案 • 现存问题 • 数据库访问基本采用直连方式 • 无法满足数据访问平台化要求 • 配置管理方式落后,运维压力大 • 为什么采用Go来实现 • go诸多优点,可用性高 •0 码力 | 17 页 | 4.02 MB | 1 年前3如何消除程序中的数据竞争-周光远
如何消除程序中的数据竞争 周光远 华为 从一些问题说起 1 2 3 什么是数据竞争 Go语言中的数据竞争(data race): data race occurs when two goroutines access the same variable concurrently and at least one of the accesses is a write. 数据竞争(data 且至少其中一次访问是写操作。 data Thread1 Thread2 data goroutine1 goroutine2 从微观看数据竞争 时间上:多个并发的读写操作被观察到的顺序无法预知。 空间上:并发读写时观察到非预期的数据。 a:1 b:2 a:2 b:1 a:1 b:2 a:2 b:1 a:1 b:1 a:2 b:2 Thread 1 Thread 2 接收完成(同一个数据); • 对于无缓冲channel:开始接收 → 发送完成(同一个数据); 开始发送 接收完成 其他的对于init函数,锁,协程,原子操作,sync包里的功能,还有许多保证,更详细可以看: https://golang.org/ref/mem https://go101.org/article/memory-model.html 消除数据竞争的原理 消除数据竞争,实质就0 码力 | 30 页 | 1.92 MB | 1 年前34.GPT 与数据库的生态整合
GPT 与数据库的生态整合 王琦智 PingCAP TiDB 开发者生态高级工程师 目 录 自然语言到 SQL 01 自然语言到图表 02 GPTs 调用数据库 API 03 总结 04 自然语言到SQL OSS Insight 自然语言到图表 Thoughts to insights made easy(with AI) GPTs 调用数据库 API Thank You0 码力 | 21 页 | 3.33 MB | 1 年前31.每秒百万数据点 Go 应用监控系统演进
每秒百万数据点 Go 应用监控系统演进 张平 AfterShip 高级 SRE 关于 AfterShip 拥抱云原生和开源系统 目 录 监控架构概览 01 如何监控 Go 应用? 02 Metrics 系统架构演进 03 Why VictoriaMetrics so good? 04 总结与展望 05 监控架构概览 第一部分 监控系统架构概览 -- 数据源 监控系统架构概览 2K+ 40K 1Mil+ 2020 年指标数据 业务指标数量 每秒写入数据点 Active Time Series 2018-2020 年架构 2020 年底面临的问题 ● 无法查询超过 30 天的数据 ● 查询慢,平均时间超过 2 分钟 ● 跨集群指标无法聚合 ● Prometheus 集群经常崩溃 ● 维护时 Prometheus 会丢数据 ● 成本高,需要大容量 SSD 磁盘 S3 2022 年中指标数据 14K+ 0.6Mil 30Mil+ 业务指标数量 每秒写入数据点 Active Time Series Thanos 架构优化 Querier Query-Frontend Store Gateway S3 Store Gateway Store Gateway Redis 2022 年底面临的问题 ● 超 100+ 倍数据点增长导致查询缓慢 ●0 码力 | 42 页 | 2.32 MB | 1 年前3Go 构建大型开源分布式数据库技术内幕
Go 搭建大型开源分布式数据库技术内幕 shenli@PingCAP 关于我 ● 申砾 (Shen Li) ● TiDB 技术负责人 ● 网易有道 / 360搜索 / PingCAP ● Infrastructure software engineer 为什么需要一个新的数据库? 从单机数据库到 NewSQL ● 关系型数据库 ● NoSQL ● 中间件 ● NewSQL Processing) ● 24/7 availability, even in case of datacenter outages ● Open source, of course 如何构建分布式数据库? 原则 ● 分层 ● Make it right and make it fast. ● 测试很重要 ● 简单易用 ● 和社区结合 架构 TiKV TiKV TiKV TiKV Metadata / Timestamp request Stateless SQL Layer Distributed Storage Layer gRPC gRPC gRPC 数据分片 ● Hash Based Partition ○ Redis ○ 不利于范围 Scan ● Range Based Partition ○ Hbase ○ Range 需要足够大且足够小0 码力 | 44 页 | 649.68 KB | 1 年前3Go Web编程
4 防止多次递交表单 4.5 处理文件上传 4.6 小结 5.访问数据库 5.1 database/sql接口 5.2 使用MySQL数据库 5.3 使用SQLite数据库 5.4 使用PostgreSQL数据库 5.5 使用beedb库进行ORM开发 5.6 NOSQL数据库操作 5.7 小结 6.session和数据存储 6.1 session和cookie 6.2 Go如何使用session 3 REST 8.4 RPC 8.5 小结 9.安全与加密 9.1 预防CSRF攻击 9.2 确保输入过滤 9.3 避免XSS攻击 9.4 避免SQL注入 9.5 存储密码 9.6 加密和解密数据 9.7 小结 10.国际化和本地化 10.1 设置默认地区 10.2 本地化资源 10.3 国际化站点 4 10.4 小结 11.错误处理,调试和测试 11.1 错误处理 11.2 本节我将介绍几个开发工具,它们都具有自动化提示,自动化fmt功能。因为它们都是跨平台的,所以安装步骤之类 的都是通用的。 LiteIDE LiteIDE LiteIDE是一款专门为Go语言开发的跨平台轻量级集成开发环境(IDE),由visualfc编写。 18 图1.4 LiteIDE主界面 LiteIDE主要特点: LiteIDE主要特点: 支持主流操作系统 Windows Linux0 码力 | 295 页 | 5.91 MB | 1 年前3Go 入门指南(The way to Go)
运行时(runtime) 2.8 Go 解释器 第3章:编辑器、集成开发环境与其它工具 3.1 Go 开发环境的基本要求 3.2 编辑器和集成开发环境 3.3 调试器 3.4 构建并运行 Go 程序 3.5 格式化代码 3.6 生成代码文档 3.7 其它工具 3.8 Go 性能说明 3.9 与其它语言进行交互 第4章:基本结构和基本数据类型 4.1 文件名、关键字与标识符 4.2 Go 第12章:读写数据 12.1 读取用户的输入 12.2 文件读写 12.3 文件拷贝 12.4 从命令行读取参数 12.5 用 buffer 读取文件 - 4 - 本文档使用 书栈(BookStack.CN) 构建 12.6 用切片读写文件 12.7 用 defer 关闭文件 12.8 使用接口的实际例子:fmt.Fprintf 12.9 格式化 JSON 数据 12.10 XML XML 数据格式 12.11 用 Gob 传输数据 12.12 Go 中的密码学 第13章:错误处理与测试 13.1 错误处理 13.2 运行时异常和 panic 13.3 从 panic 中恢复(Recover) 13.4 自定义包中的错误处理和 panicking 13.5 一种用闭包处理错误的模式 13.6 启动外部命令和程序 13.7 Go 中的单元测试和基准测试 130 码力 | 466 页 | 4.44 MB | 1 年前3IPC性能极致优化方案-RPAL落地实践
IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar 部署) 2. 本地基础组件:mesh 方案诞生的背景 方案诞生的背景 IPC 的性能瓶颈有哪些: 1. 系统特权级切换; 2. 异步线程唤醒/休眠(事件通知); 3. 数据拷贝(序列化/反序列化); 方案诞生的背景 能不能把库函数调用的高性能优势做到 IPC 里面,降低进程间的事件通知和数据拷贝开销? 以go-go微服务 RPC 通信场景为例,该问题可以抽象为,如何高效地在两个 go runtime 间进行函数调用? 方案诞生的背景 网络模型,实现了纯用户态的事件轮询和无拷贝的指针读写接口。 从性能瓶颈的两点分析: 1. 异步线程唤醒: 关键在于如何最低限度降低线程唤醒的开销,非必要不通知事件。 2. 数据序列化/反序列化 需要做到跨进程的虚拟地址空间共享,通过传递指针来传递一切数据。 全进程地址空间共享与保护 第二部分 全进程地址空间共享与保护 模拟插件/动态链接库等方案的用户态上下文切换和虚拟地址访问,需要解决: 1. 虚拟地址冲突问题;0 码力 | 39 页 | 2.98 MB | 1 年前3
共 80 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8