积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(58)Go(58)

语言

全部中文(简体)(56)英语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(55)其他文档 其他(2)PPT文档 PPT(1)
 
本次搜索耗时 0.077 秒,为您找到相关结果约 58 个.
  • 全部
  • 后端开发
  • Go
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Go性能优化概览-曹春晖

    业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p io/personal_website/research/interactive_latency.html 优化的前置知识 • 要能读得懂基本的调⽤栈 • 了解 Go 语⾔内部原理(runtime,常⽤标准库) • 了解常⻅的⽹络协议(http、pb) https://github.com/bagder/http2-explained https://github.com/bagder/http3-explained ⽤户声明的对象,被放在栈上还是堆上, 是由编译器的 escape analysis 来决定的 ⽅法论 内存使⽤优化 CPU 使⽤优化 阻塞优化 GC 优化 标准库优化 runtime 优化 应⽤层优化 底层优化 • 越靠近应⽤层,优化带来的效果越好 • 涉及到底层优化的,⼤多数情况下还是修改应⽤代码 逻辑优化 ⽣产环境的优化 第⼆部分 ⾸先,是发现问题 API 压测 全链路压测 ⽣产环境被 ⾼峰流量打爆了
    0 码力 | 40 页 | 8.69 MB | 1 年前
    3
  • pdf文档 IPC性能极致优化方案-RPAL落地实践

    IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar go runtime 间进行函数调用? 方案诞生的背景 基于以上问题,我们最终引入了 RPAL(Run Process As Library) 方案,基于跨进程虚拟地址 共享,复用 epoll 网络模型,实现了纯用户态的事件轮询和无拷贝的指针读写接口。 从性能瓶颈的两点分析: 1. 异步线程唤醒: 关键在于如何最低限度降低线程唤醒的开销,非必要不通知事件。 2. 数据序列化/反序列化 需 sender 线程上下文拷贝到 sender 线程内核栈 pt_regs 处内存。 高效的Go Event Poller 第四部分 高效的Go Event Poller Go 原生 epoll 模型 1. writev syscall 2. epoll wait 3. readv syscall 4. 可能还有 futex_wake 高效的Go Event Poller 纯用户态 poller
    0 码力 | 39 页 | 2.98 MB | 1 年前
    3
  • pdf文档 5.cgo 原理解析及优化实践

    cgo 原理解析及优化实践 朱德江 蚂蚁集团 MOSN 核心成员 Golang contributor Envoy Golang extension maintainer 公众号 • 开源爱好者 • 十余年网关研发 • OpenResty 老司机(NGINX + LuaJIT) • MOSN 核心成员 • Envoy Golang extension maintainer • • 玩过 DSL 编译器 • 对 LuaJIT、Go 有一些研究 目 录 背景介绍 01 cgo 工作机制 02 cgo 调度机制 03 CPU 优化 04 GC 优化 05 背景介绍 第一部分 网关发展历史 网关的扩展机制 什么是 MoE 举个例子 为什么需要 MoE Envoy  研发效能  良好的生态,上手门槛低  Wasm?Lua? Golang Function Interface 函数调用 数据交互 抽象模型 1 2 3  对 PC 寄存器的修改  编译器完成地址指引  函数调用规约  Go 1.17  数据结构/类型  内存对象生命周期  GMP cgo 编译的两个阶段 cgo 预编译 常规编译 1 2  生成 wrapper 代码  屏蔽 GMP 模型  底层调用 C 编译器  链接器通过符号寻址
    0 码力 | 45 页 | 5.74 MB | 1 年前
    3
  • pdf文档 2.1.1 Golang主动式内存缓存的优化探索之路

    Golang主动式内存缓存的优化探索之路 安晏伯 学而思网校 技术专家 目 录 问题引入 01 难点攻克 02 主动式内存缓存框架 03 总结 04 问题引入 第一部分 为什么能有极致的性能? 01. 如何优化? 解决了哪些技术难题? 主动式内存缓存 如何优化? 极致的性能 除了网络IO,与Redis有什么区别? 复杂的查询怎么办? 02. 传统的Cache很难 如何像SQL一样灵活? 多维度查询 03. 业务数据的查询条件复杂,数据在内存中该如何组织 Q1:已开始的公益直播,且公开显示 直播1 Q2:2021-06-27 10:00:00之后 Q1 无数据 数据模型管理 04. 基于golang的struct tag实现正排、倒排结构的自动化管理 全数据扫描? 索引 主键 倒排 业务快速增长 存储如何无限扩展? 存储扩展 05. 业务数据 主动式内存缓存框架 第三部分 技术全景图 01. 主动式内存缓存架构的技术全景图 数据中心、数据源 02. 分布式部署,解决海量数据的传输、加载 数据全量加载时,缓解数据库压力 链路优化 优化 协议 编码 空值剔除 数据存储、数据传输 带宽减少40% 2GB -> 1.2GB MaxwellConsumer 03. 通过golang接口的方式,实现业务与框架代码分离 DataManager
    0 码力 | 48 页 | 6.06 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Go版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.5 重识搜索算法 . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台
    0 码力 | 383 页 | 18.48 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Golang版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.5 重识搜索算法 . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台
    0 码力 | 382 页 | 17.60 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Golang版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 14 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结构 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样我们才能将各种算法进行对比,从而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台
    0 码力 | 379 页 | 30.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Go 版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.5 重识搜索算法 . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 www.hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台
    0 码力 | 384 页 | 18.49 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b4 Golang版

    10.2. 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 10.3. 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.4. 重识搜索算法 . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 1. 初识算法 hello‑algo.com 11 Figure 1‑5. 拼装积木 两者的详细对应关系如下表所示。 数据结构与算法 LEGO 乐高 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得注意的是,数据结构与算法独立于编程语言 空间效率,即算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。掌握评估算法效率的方法则至关重要,因为 只有了解评价标准,我们才能进行算法之间的对比分析,从而指导算法设计与优化过程。 2.1.2. 效率评估方法 实际测试 假设我们现在有算法 A 和算法 B,它们都能解决同一问题,现在需要对比这两个算法的效率。我们最直接的 方法就是找一台计算机,运行这两个算法,并监
    0 码力 | 347 页 | 27.40 MB | 1 年前
    3
  • pdf文档 2-6-Golang 在 Baidu-FrontEnd 的应用-陶春华

    可编译为独立可执行程序(包括依赖的库) –Python: 需要python运行环境,及依赖的库 Golang (1) • 性能 –和C接近 • 并发性 –Go routine: 屏蔽底层的机制,充分利用cpu资源 –多线程模型:容易思考 • 开发效率 –描述能力和python接近 –较丰富的库(系统库,第三方库) Golang (2) • 大型程序的组织 –Package –数据访问的限制(首字母大小写的区别) 为什么重写BFE • 现存问题 –修改成本高 • 事件驱动的编程模型:编码和调试难度大 • C语言本身的难度和开发效率 –配置管理方式落后 • 为单产品线设计,无法支持平台化要求 • 配置变更(修改、重载、验证)能力差 –变更和稳定性的矛盾 • 程序出core 技术选型:Go vs Nginx • 学习成本 • 开发成本 –并发编程模型:同步(Go) vs 异步(Nginx) –内存管理 –语言描述能力 • GC优化 • http协议栈 • 分布式架构 GC带来的问题 –GC是个好东西,但也有问题 –难以避免的延迟(几十到几百ms) • 经验公式:10万对象1ms 扫描时间 –1个tcp连接,约10个对象=> 1万连接,1ms gc延迟 • GO-BFE的实时需求 –请求的处理延迟 平均1ms以内,最大10ms • 实测 –100万连接,400ms gc延迟 GC优化思路 •
    0 码力 | 35 页 | 730.17 KB | 1 年前
    3
共 58 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
Go性能优化概览春晖IPC极致方案RPAL落地实践cgo原理解析2.1Golang主动动式主动式内存缓存探索Hello算法1.11.00b51.2简体中文简体中文0b4BaiduFrontEnd应用春华
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩