积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(15)Go(15)

语言

全部中文(简体)(14)中文(繁体)(1)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.061 秒,为您找到相关结果约 15 个.
  • 全部
  • 后端开发
  • Go
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 对 Go 程序进行可靠的性能测试

    for n := 0; n < size; n++ { tree.Put(n, n) } } }) } } 为什么插入的性能是线性的?红黑树的插入性能不是 O(log(n)) 吗? 代码写错了……吧……? name time/op RBTree_PutWrong/size-0-8 检验,直到找到能够使 p 值能 够满足显著性水平,宣称性能得到了提升。 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 机器过热 29 对结果进行回归,肉眼可见的性能下降 https://github.com/changkun/cgo-benchmarks/tree/master/syscall 总结 2020 © Changkun Ou · stash pop 恢复代码的修改内容,执行测试得到修改后的性能测试结果 ○ 使用 benchstat 对前后测量到的性能测量进行假设检验 ○ 验证结果有效性,例如确认结果的波动,比较随时间推移造成的性能回归等等 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 进一步阅读的参考文献 ● https://dave.cheney.net/high-perfo
    0 码力 | 37 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Golang版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10. 查找算法 155 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 时间复杂度:线性阶 func algorithm_B(n 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Golang版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10. 查找算法 158 10.1. 线性查找 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.2. 二分查找 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 时间复杂度:线性阶 func algorithm_B(n 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这也正是时间增长趋势的含义。 时间复杂度的推算方法更加简便。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计
    0 码力 | 202 页 | 15.73 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Golang版

    复杂度分析 hello‑algo.com 20 图 2‑1 是该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 ,给定三个算法 A、B 和 C : // 算法 A 的时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 的时间复杂度:线性阶 func algorithm_B(n int) { for i := 0; i < n; i++ { fmt.Println(0) } } // 算法 C 的时间复杂度:常数阶 func A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑7
    0 码力 | 382 页 | 17.60 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Go版

    是该求和函数的流程框图。 第 2 章 复杂度分析 hello‑algo.com 20 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 的时间复杂度:线性阶 func algorithm_B(n int) { for i := 0; i < n; i++ { fmt.Println(0) } } // 算法 C 的时间复杂度:常数阶 func A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑7
    0 码力 | 383 页 | 18.48 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Golang版

    次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 时间复杂度:线性阶 func algorithm_B(n 相较于直接统计算法运行时间,时间复杂度分析有哪些优势和局限性呢? 时间复杂度能够有效评估算法效率。例如,算法 B 的运行时间呈线性增长,在 ? > 1 时比算法 A 慢,在 ? > 1000000 时比算法 C 慢。事实上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「线性阶」的算法,这正是时间增长趋势所表达的含义。 时间复杂度的推算方法更简便。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在 i++ { // +1 fmt.Println(a) // +1 2. 复杂度 hello‑algo.com 17 } } ?(?) 是一次函数,说明时间增长趋势是线性的,因此可以得出时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 ?(?) ,这个数学符号称为「大 ? 记号 Big‑? Notation」,表示函数 ?(?) 的「渐近上界 Asymptotic Upper Bound」。
    0 码力 | 347 页 | 27.40 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Golang版

    hello‑algo.com 19 图 2‑1 展示了该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 ,给定三个算法 函数 A、B 和 C : // 算法 A 的时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 的时间复杂度:线性阶 func algorithm_B(n int) { for i := 0; i < n; i++ { fmt.Println(0) } } // 算法 C 的时间复杂度:常数阶 func A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑7
    0 码力 | 379 页 | 30.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Go 版

    www.hello‑algo.com 20 图 2‑1 是该求和函数的流程框图。 图 2‑1 求和函数的流程框图 此求和函数的操作数量与输入数据大小 ? 成正比,或者说成“线性关系”。实际上,时间复杂度描述的就是 这个“线性关系”。相关内容将会在下一节中详细介绍。 2. while 循环 与 for 循环类似,while 循环也是一种实现迭代的方法。在 while 循环中,程序每轮都会先检查条件,如果条 hello‑algo.com 29 // 算法 A 的时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 的时间复杂度:线性阶 func algorithm_B(n int) { for i := 0; i < n; i++ { fmt.Println(0) } } // 算法 C 的时间复杂度:常数阶 func A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为“常数 阶”。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为“线性阶”。 ‧ 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小 ? 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。 图 2‑7
    0 码力 | 384 页 | 18.49 MB | 10 月前
    3
  • pdf文档 2.1.7 谈如何构建易于拆分的单体应用

    library 和main.go等⽂件; 2. 模块间调⽤⽅式的修改;由函数 handler改为rpc handler 总结 第四部分 总结 微服务架构的困境 业务建模 基于gokit⼯程实践 回归⽣活原点: 1. ⼈ 2. 事 3. 物 4. 规则 1. 选择合适的tools 2. 合理的⽬录结构 3. 善⽤interface{} 可扩展的业务架构 = 业务模型 + 合适的架构模型 + 优雅的⼯程实现
    0 码力 | 27 页 | 13.04 MB | 1 年前
    3
  • pdf文档 2.游戏战中陪伴助手微服务架构设计与应用

    缓存功能下沉 - 由重排层也不是业务层存储缓存 - 破坏推荐系统架构,降低复用性 - 裁剪对局历史 - 最多缓存 10 分钟的对局历史 - 不是根本解决方法 - 微服务单体化 - 腾讯文档团队《回归单体成为潮流?腾讯文档如何实现灵活架构切换》 - 更进一步优化:网络 RPC 改为函数调用,同时保留微服务架构 微服务——上线前压测 贵 微服务——火焰图 - 以实验层火焰图为例,业务逻辑仅占
    0 码力 | 47 页 | 11.10 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
Go程序进行可靠性能测试Hello算法1.00b1Golang0b21.10b40b51.2简体中文简体中文2.1如何构建易于拆分单体应用游戏战中陪伴助手服务架构构设设计架构设计
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩