积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部中文(简体)(8)中文(简体)(2)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    码运行后生成文件,但数 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 运行后完成数据爬虫任务, 所获取数据准确,少量数 据有所遗漏。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 爬虫数据采集  目前DeepSeek R1、Open AI o3mini、Kimi 行后生成本地文件,但提取 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文件数据读取 1、读取文件; 2、根据指定内容整理成表格。 任务 Open AI 比2024年同期多或者少的百分比、环比的百分比。3.当天的公路客运量、比2024年同期多或者少的百分比、环比的百分 比。4.当天的民航客运量、比2024年同期多或者少的百分比、环比的百分比。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文件数据读取 Claude 3.5 sonnet 很好地完成了数据读取及提取 任务,没有漏数据指标,数据
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 实施人工智能应用分类分级管理。根据功能、性能、应用场景等, 对人工智能系统分类分级,建立风险等级测试评估体系。加强人工智能最终用 途管理,对特定人群及场景下使用人工智能技术提出相关要求,防止人工智能 系统被滥用。对算力、推理能力达到一定阈值或应用在特定行业领域的人工智 能系统进行登记备案,要求其具备在设计、研发、测试、部署、使用、维护等 全生命周期的安全防护能力。 5.2 建立人工智能服务可追溯管理制度。对面向公众服务的人工智能 (g)研发者应定期开展安全评估测试,测试前明确测试目标、范围和安 全维度,构建多样化的测试数据集,涵盖各种应用场景。 (h)研发者应制定明确的测试规则和方法,包括人工测试、自动测试、 混合测试等,利用沙箱仿真等技术对模型进行充分测试和验证。 (i) 研发者应评估人工智能模型算法对外界干扰的容忍程度,以适用范 围、注意事项或使用禁忌的形式告知服务提供者和使用者。 (j) 研发者应生成详细的测试报告,分析安全问题并提出改进方案。
    0 码力 | 20 页 | 3.79 MB | 28 天前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准。规范人工智能相关技术、应用的概念定义, 为其它标准的制定和人工智能研究提供参考,包括人工智能相关 术语定义、范畴、实例等标准。 2. 参考架构标准。规范人工智能相关技术、应用及系统的 逻辑关系和相互作用,包括人工智能参考架构、人工智能系统生 命周期及利益相关方等标准。 3. 测试评估标准。规范人工智能技术发展的成熟度、人工 测试评估标准。规范人工智能技术发展的成熟度、人工 智能体系架构之间的适配度、行业发展水平、企业智能化能力等 方面的测试及评估的指标要求,包括与人工智能相关的服务能力 成熟度评估,人工智能通用性测试指南、评估原则和等级要求, 企业智能化能力框架及测评要求等标准。 4. 管理标准。规范人工智能技术、产品、系统、服务等全 生命周期涉及的人员、组织管理要求和评价,包括面向人工智能 组织的管理要求,人工智能管理体系、分类方法、评级流程等标 器、计算设备、算力中心、系统软件、开发框架、软硬件协同等 标准。 1. 基础数据服务标准。规范人工智能研发、测试、应用等 过程中涉及数据服务的要求,包括数据采集、数据标注、数据治 理、数据质量等标准。 2. 智能芯片标准。规范智能芯片相关的通用技术要求,包 括智能芯片架构、指令集、统一编程接口及相关测试要求、芯片 数据格式和协议等标准。 3. 智能传感器标准。规范单模态、多模态新型传感器的接
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 选择依据。" �实战技巧: 执行需求 �实战技巧: "将以下C语言代码转换为Python,要求: ① 保持时间复杂度不变; ② 使用numpy优化数组操作; ③ 输出带时间测试案例的完整代码。" 创造性需求 "设计一款智能家居产品,要求: ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 设计实验性提示语,推动AI能力的进化 伦理意识 在提示语中嵌入伦理考量
    0 码力 | 104 页 | 5.37 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样?” 强制逻辑链条(如“分三点回答”) 推理模型 需明确对话目标,避免开放发散 选择依据。" �实战技巧: 执行需求 �实战技巧: "将以下C语言代码转换为Python,要求: ① 保持时间复杂度不变; ② 使用numpy优化数组操作; ③ 输出带时间测试案例的完整代码。" 创造性需求 "设计一款智能家居产品,要求: ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 设计实验性提示语,推动AI能力的进化 伦理意识 在提示语中嵌入伦理考量
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    分析你的顾虑(如“领导可能认为我不负责”),提供理性视角(如“家庭突发情况≠工作态度问题”)。 • 建议沟通框架:紧急情况说明+短期解决方案+责任承诺。例如: “张总,我家里老人突发中风住院(附病历),需要请假3天。我已将项目A的测试环节交接给小刘(附交接文 档),每天早晚会同步进度。周四返岗后加班追赶,确保不影响上线。” 2. 生成具体话术(用AI优化表达) p 操作:输入你的草稿:“张总,我家里有事要请假,但项目我会尽量兼顾。” 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序 ” 分步指导(如“先写递归函数 ”) 通用模型 细化步骤, 明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例 ” 模糊需求(如“写个排序代码 ”) 多轮对话 通用模型 自然交互,无需结构化指令 “你觉得人工智能的未来会怎样? ” 强制逻辑链条(如“分三点回答 ”) 推理模型 需明确对话目标,避免开放发散 执行需求 实战技巧: "将以下C 语言代码转换为Python, 要求: ① 保持时间复杂度不变; ② 使 用numpy 优化数组操作; ③ 输出带时间测试案例的完整代码。" 提示语示例 特征 描述 示例 沟通桥梁 连接人类意图和AI理解 “将以下内容翻译为法语 :Hello, world” 上下文提供 者 为AI提供必要的背景信息 “假设你是一位19世纪的历史学家
    0 码力 | 65 页 | 4.47 MB | 7 月前
    3
  • pdf文档 普通人学AI指南

    闭源:由一个小团队开发的闭源 AI,专注于生成创意和艺术图像。 2.3 AI 视频工具 Figure 5: AI 视频工具 2.3.1 Sora (OpenAI 公司) 内测:由 OpenAI 开发,目前处于内部测试阶段的项目。 8 2.3.2 Runway 闭源:一个闭源的创意工具,支持通过 AI 进行视频编辑和生成。 2.3.3 Pika 闭源的图像编辑工具,专注于简化图像处理流程。 2.3.4 cker 提供轻量级虚拟化,能快 速部署并且易于管理应用。 Docker 的优势: 1. 快速部署:Docker 容器可以在几秒钟内启动,提高了开发和部署的效率。 2. 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 41中右下角的“创建并导入”按钮。 Figure 41: MaxKB 界面-知识库配置续 如下图 42所示,上传这里面的文件到本地 MaxKB 系统,还可以直接读取 一个文件夹,这样就更方便了。为了加快接入,选择一部分文件作为测试: Figure 42: MaxKB 界面-知识库配置续 然后点击右下角创建并导入,如下图 43所示: 36 Figure 43: MaxKB 界面-知识库配置续 导入后,系统就会开始处理分析和接入,如图
    0 码力 | 42 页 | 8.39 MB | 7 月前
    3
  • pdf文档 TVM工具组

    模型文件,不需要预先安装 caffe 。 net 已测试网络:alexnet / densenet121 / inception v1 / inception v3 / inception v4 / mobilenet v1 / mobilenet v2 / resnet50 / squeezenet v1 / vgg16 / ssd / fcn-8s op 已测试 op:innerproduct / conv2d
    0 码力 | 6 页 | 326.80 KB | 5 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化 中⼩规模模型快速上线 PPIO派欧云 价格仅为OpenAI 1/20,注册赠5000万tokens 低成本尝鲜与测试 2. 国际接⼊渠道(需魔法或外企上⽹环境  ) 英伟达NIM:企业级GPU集群部署(链接) Groq:超低延迟推理(链接) 五、完整671B MoE模型部署(Ollama+Unsloth) stall.sh)" brew install llama.cpp 2. 下载并合并模型分⽚: 3. 安装Ollama: 4. 创建Modelfile: 5. 运⾏模型: 4. 性能调优与测试 GPU利⽤率低:升级⾼带宽内存(如DDR5 5600+)。 扩展交换空间: 六、注意事项与⻛险提示 1. 成本警示: 70B模型:需3张以上80G显存显卡(如RTX A6000),单卡⽤户不可⾏。
    0 码力 | 7 页 | 932.77 KB | 7 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    做过去只有人才能做的事  做人做的重复繁琐易出错的事  拆解繁琐复杂的业 务流程 55政企、创业者必读 场景选择示例:人员招聘系统 场景分得足够细,就可以训练对应的专业模型来解决问题 注:经360内部测试,深色的业务环节更加符合“四个十倍”原则 示例:人员招聘就是一个太大的、笼统的场景 需要细分成职位描述、简历筛选、面试评估等粒度更合适的场景 56政企、创业者必读 某省39家钢铁企业,联合打
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研人工智能人工智能安全治理框架1.0国家产业综合标准标准化体系建设指南2024入门精通20250204清华华大大学普通通人普通人如何抓住红利AITVM工具DeepseekR1本地部署完全手册周鸿祎演讲我们带来创业机会360202502
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩