清华大学 普通人如何抓住DeepSeek红利
方案不可行 Python验算 无符合数字 有符合数字 如何使用DeepSeek处理生活中的事务 “生活太累?DeepSeek帮你‘减负’到家! 场景1:职场妈妈的晨间战役(日常琐事管理) 优先级排序(幼儿园事务>会议准备>生活采购) 生成最优动线:地图标注幼儿园/干洗店/超市与公司的位置关系 即时服务对接: ✓ 调用社区跑腿API下单手工材料配送 ✓ 接入干洗店智能柜系统预约取件码 ✓ 立刻赶往医院。如果指标比较严重,需要立即行动;否则,可以在家庭和工作 冲突稍缓后,安排陪同父母进行进一步检查。 p 明确背景和身份 p 详细描述各个情境 p 说明你当前的困惑或目标 p 提出具体问题 p 请求分步建议或优先级排序 p 提供更多背景信息(如需要) 情景还原:你是一个白领,面临以下事情:19:00女儿钢琴比赛 vs 跨国并购会议、季度裁员指标压力导致失眠、 健身教练多次提醒体脂率超标、父母体检报告出现异常指标 情景还原:台风突袭导致孕期34周妻子被困郊区、数据中心备用电源仅能维持4小时、急需转移独居失智老 人、社区抢购导致物资短缺 DeepSeek应急协议: ① 资源热力图: 实时整合气象局数据/道路塌方报告/医院接诊状态 物资预测算法锁定3公里内未饱和便利店 ② 生命线工程: 孕妇救援通道: ✓ 自动生成医疗档案二维码 ✓ 无人机勘察可行路线 ✓ 协调民间救援队GPS定位 老人转移方案: ✓ 调取智能手环历史活动轨迹 ✓ 社区志愿者网络即时广播0 码力 | 65 页 | 4.47 MB | 7 月前3DeepSeek从入门到精通(20250204)
慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导0 码力 | 104 页 | 5.37 MB | 7 月前3清华大学 DeepSeek 从入门到精通
慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导0 码力 | 103 页 | 5.40 MB | 8 月前3清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单
、质量评估或产品验证的最终依据。 文本数据集成 1、分别阅读约7000token和15000token的文 本内容,测试模型对中、长文本处理效果 2、整理集成可视化的数据表格 3、按照日期规范排序 任务 Open AI o3mini 一般文本(7000token): 能够高效提取文本中的数据, 并整理成可视化数据表格, 格式工整、简洁,数据准确 但数据维度有所缺失。 长文本(15000token): 提示词集。 三 效果如何? 元知AI综述工具 元知是国内由清华、北航专家团队研发的一个AI学术平台,目前其AI综述生成工具已开放使用,能够帮助用户从海 量文献中提取核心信息,通过自然语言处理算法,实现从文献梳理到观点提取到研究评论的一键式全自动生成。 产品 概况 功能亮点 功能亮点 多版本与模块化支持:目前提供三个版本(基础版、增 强版、专业版),能够灵活应对不同用户的综述需求。 层层递进。语言中多使用中 性描述,客观呈现研究进展 与问题 语言逻辑严谨,条理清晰,各部分 之间逻辑关系明确。在历史背景和 当前趋势部分,按照时间顺序和技 术创新进行分类,逻辑性强 内容结构 通过逻辑排序、层次化分段 和观点与事实的清晰区分, 确保生成的内容符合学术写 作标准。内容结构完整,包 括研究现状、简要评述和主 要参考文献等板块。同时, 研究现状部分围绕研究主题 进一步细分为多个研究层次,0 码力 | 85 页 | 8.31 MB | 7 月前3人工智能安全治理框架 1.0
针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6.4 社会公众安全应用指引 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践,提倡 优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架0 码力 | 20 页 | 3.79 MB | 28 天前3普通人学AI指南
14: 第一次提问:你是谁,用中文回答 发第二条消息,”Python 代码,冒泡排序,代码 + 解释”,回答响应非常快, 如图 15所示: Figure 15: 第二次提问:Python 代码,冒泡排序 再告诉它,用中文回答,返回中文回答结果,如图 16 所示: 16 Figure 16: Python 代码,冒泡排序,中文回答 如果想用中文回复,保险的做法,每次问答时,提问最后加一个中文回复这0 码力 | 42 页 | 8.39 MB | 7 月前3【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502
很多公司参与开源,帮助改进产品,众人拾柴火焰高, 反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小 美国预训练堆算力的路线不可持续,有待发现新范式“换道超车” 软件和算法差距并不大,主要差距在工程、硬件等方面 23政企、创业者必读 DeepSeek的出现验证了我们的预判 而DeepSeek的创新更具颠覆性 24政企、创业者必读 DeepSeek是完美的颠覆式创新 34政企、创业者必读 成本的急剧降低 DeepSeek可适配国产硬件,促进国产硬件发展 DeepSeek的优化降低对推理硬件的要求,减少推理成本 训练成本降低,堆显卡模式受质疑,探索新思路,算法优化空间大 无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子 公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机 小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络 控制 • 废品无人天车吊装控制 • 铁水质量预报 • 高炉温度分布 • 高炉燃料比监测 • 高炉精准出铁预测 • 高炉炉况诊断 • 高炉燎铁能耗预测 • 高炉在含量智能预监 • 铁包动态调度算法(铁包 跟踪) • 烟气余热回收控制 • 部署工艺模型分析诊断 • 能源诊断分析 • 建设质量工艺动态设计 优化 • 堆堵料异常检测 • 炼铁原料混匀过程调度 优化 • 风机风压参数实时捕捉0 码力 | 76 页 | 5.02 MB | 5 月前3国家人工智能产业综合标准化体系建设指南(2024版)
改变工业生 产模式和经济发展形态,将对加快建设制造强国、网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 深度学习框架和工具,模型层主要是指大模型等技术和产 品,应用层主要是指人工智能技术在行业场景的应用。近年 来,我国人工智能产业在技术创新、产品创造和行业应用等 键 技术、智能产品与服务、赋能新型工业化、行业应用、安全 /治理等 7 个部分,如图 1 所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、 图像,以及人机混合增强智能、智能体、跨媒体智能、具身 智能等的技术要求,推动人工智能技术创新和应用。智能产 智能体基本功能、应用架构等技术要求,包括智能体强化学习、 多任务分解、推理、提示词工程,智能体数据接口和参数范围, 人机协作、智能体自主操作、多智能体分布式一致性等标准。 10. 群体智能标准。规范群体智能算法的控制、编队、感知、 规划、决策、通信等技术要求和评测方法,包括自主控制、协同 控制、任务规划、路径规划、协同决策、组网通信等标准。 11. 跨媒体智能标准。规范文本、图像、视频、音频等多模0 码力 | 13 页 | 701.84 KB | 1 年前3开源中国 2023 大模型(LLM)技术报告
b5df081) 10 / 32 LLM 基础设施:大模型训练平台与工具 大模型训练平台和工具提供了强大且灵活的基础设施,使得开发和训练复杂的语言模型变得可行且高 效。 这些工具提供了先进的算法、预训练模型和优化技术,极大地简化了模型开发过程,加速了实验周期, 并使得模型能够更好地适应各种不同的应用场景。此外,它们还促进了学术界和工业界之间的合作与 知识共享,推动了自然语言处理技术的快速发展和广泛应用。0 码力 | 32 页 | 13.09 MB | 1 年前3
共 9 条
- 1