积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部中文(简体)(9)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.065 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek从入门到精通(20250204)

    CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 避免误区 • 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例 “请分三步推导勾股定理,参考:
    0 码力 | 104 页 | 5.37 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 避免误区 • 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例 “请分三步推导勾股定理,参考:
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 DeepSeek R1  文件数据读取完整无缺失  数据分析全面、逻辑清晰严谨  网络爬虫任务数据爬取完整、准确  数据挖掘能够准确分类并提供建议  数据可视化任务能力有待完善 Claude 3.5 sonnet  数据读取输出逻辑性强、指标清晰  数据分析任务完成得较为简单 数据分析任务完成得较为简单  爬虫数据采集未形成明确结论  数据挖掘深度较浅  绘制出可视图表不稳定 Open AI o3 mini  数据分析高效、全面、准确  数据可视化能力突出、直接生成  网络爬虫任务爬取数据结果为空  暂不支持上传数据附件  数据挖掘深度较浅 Kimi k1.5  数据挖掘能力出色  快速读取文件数据,提取网址链接  长文本数据处理能力突出  爬虫数据采集存在代码错误问题
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    脑右下角显示时间:3:05 PM,你手心冒汗,疯狂翻找资料,但文档光标始终停留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 可以,但需分阶段“榨干AI效率”,核心策略:框架复制+模块填充+数据嫁接。 分步解决方案: 第一阶段:5分钟——用AI暴力生成框架(目标:3000字) 场景1:1小时内写完一个1万字的项目书 第二阶段:20分钟——用AI批量填充模块(目标:6000字) 作效率和表现。 以往的解决方式: • 依赖同事的口头介绍,容易遗漏重要信 息。 • 手动查阅厚重的产品手册和内部文档, 耗时较长。 • 参加多部门的培训,但信息量大,难以 消化。 • 通过网络搜索行业信息,但信息分散, 难以整合。 场景2:新员工快速熟悉公司情况和行业情况 快速了解行业情况和市场趋势 DeepSeek可以整合行业报告、市场分析、竞争对手信 息等数据,帮助新员工快速掌握行业动态。 但家人需要你立刻回去。你 坐在工位上反复措辞,始终不敢敲开领导办公室的门。 场景4:项目中急需请假 如何开口 是否可用DeepSeek辅助处理?可以,且建议分三步使用: 1. 情绪梳理与沟通策略(用AI模拟对话) p 操作:向DeepSeek输入:“我要请假,但项目很紧急,领导可能不满,如何沟通?” p AI辅助: • 分析你的顾虑(如“领导可能认为我不负责”),提供理性视角(如“家庭突发情况≠工作态度问题”)。
    0 码力 | 65 页 | 4.47 MB | 7 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    AI 编程  插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使 其 :大模型开发框架通过提供高 层次的 API 简化了复杂模型的构建过程。这 些 API 抽象掉了许多底层细节,使开发者能 够专注于模型的设计和训练策略。 :这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。 :它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 人工智能安全治理框架 1.0

    全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 (b)偏见、歧视风险。算法设计及训练过程中,个人偏见被有意、无意引入, 或者因训练数据集质量问题,导致算法设计目的、输出结果存在偏见或歧视, 甚至输出存在民族、宗教、国别、地域等歧视性内容。 (c)鲁棒性弱风险。由于深度神经网络存在非线性、大规模等特点,人 工智能易受复杂多变运行环境或恶意干扰、诱导的影响,可能带来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 (d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被 球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 全球人工智能供应链,带来突出的芯片、软件、工具断供风险。 3.2 人工智能应用安全风险 3.2.1 网络域安全风险 (a)信息内容安全风险。人工智能生成或合成内容,易引发虚假信息传播、 歧视偏见、隐私泄露、侵权等问题,威胁公民生命财产安全、国家安全、意识 形态安全和伦理安全。如果用户输入的提示词存在不良内容,在模型安全防护
    0 码力 | 20 页 | 3.79 MB | 29 天前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    已发展到不为小事而发怒和怄气 答案:B 在学完一篇逻辑结构严密的课文以后,勾画出课文的论点论据的逻辑关系图以 帮助理解和记忆。这种学习方法属于____。 A. 精细加工策略 B. 组织策略 C. 复述策略 D. 做笔记策略 答案:B 有学者强调,教育要根据一个民族固有的特征来定,这种观点体现了____ A. 生产力对教育的影响和制约 B. 政治制度对教育的影响和制约 C. 文化对教育的影响和制约
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 DeepSeek图解10页PDF

    2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依 然可以正常工作,不受外部因素影响。 本教程搭建 DeepSeek 好处 本地搭建 DeepSeek 三个比较实际的好处: Scaling Laws, Transformer 就是自然语言处理领域实现扩展规律的最好的网络结构。 2.2 Transformer 基础架构 LLM 依赖于 2017 年 Google 提出的 Transformer 模型,该架构相比传统的 RNN(递归神经网络)和 LSTM(长短时记忆网络)具有更高的训练效率和 更强的长距离依赖建模能力。Transformer 由多个关键组件组成:1 动关注句子中的重要单 词,理解不同词语间的联系。2. 多头注意力(Multi-Head Attention):使用 多个注意力头同时分析不同的语义信息,使得模型的理解能力更强。3. 前 馈神经网络(FFN):非线性变换模块,提升模型的表达能力。4. 位置编码 (Positional Encoding):在没有循环结构的情况下,帮助模型理解单词的顺 序信息。 Transformer 结构的优势
    0 码力 | 11 页 | 2.64 MB | 7 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子  公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机  小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络  技术门槛降低, 可标准化、SaaS化部署,下载就能用 DeepSeek颠覆式创新——成本暴跌 35政企、创业者必读 惠及全球人民,科技平权,技术平民化  运营商、云服务可免费用,降低云服务成本 课题,进一步服务政府、城市、企业智能化升级。 周鸿祎荣获全国劳动模范、国家百千万人才工程有突出贡献 中青年专家、2023年度“北京学者“等荣誉称号。 74 政企、创业者必读政企、创业者必读 • 国家级网络攻击的发现、捕获、抵御能力全球领先 • 安全大数据 (攻击样本库、病毒基因库、安全知识库 等)规模全球领先 • 安全人才规模全球领先 • 漏洞挖掘能力全球领先 四个全球领先 世界的360 中国的360 世界领先、中国第一的网络安全领军企业 中国唯一被美双重制裁的互联网企业和安全企业 75政企、创业者必读 探索形成了一套自主可控、「看见+处置」为核心的数字安全「中国方案」 360 安 全 云 每天云查杀1000亿次,平均每秒115万次,每日处置安全事件10亿次 每天拦截勒索攻击100万次、挖矿攻击1000万次、恶意网址7.5亿次、网络电信诈骗6000万次 云端响应服务
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    人工智能是引领新一轮科技革命和产业变革的基础性 和战略性技术,正成为发展新质生产力的重要引擎,加速和 实体经济深度融合,全面赋能新型工业化,深刻改变工业生 产模式和经济发展形态,将对加快建设制造强国、网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 深度学习框架和工具,模型层主要是指大模型等技术和产 组接 口协议和测试方法,及使能软件的访问协议、功能、性能、能效 的测试方法和运行维护要求等标准。 5. 算力中心标准。规范面向人工智能的大规模计算集群、 新型数据中心、智算中心、基础网络通信、算力网络、数据存储 8 等基础设施的技术要求和评估方法,包括基础设施参考架构、计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6. 系统软件标准。规范人工智能系统层的软硬件技术要求, (七)安全/治理标准 安全/治理标准主要包括人工智能领域的安全、治理等标准。 1. 安全标准。规范人工智能技术、产品、系统、应用、服 务等全生命周期的安全要求,包括基础安全,数据、算法和模型 安全,网络、技术和系统安全,安全管理和服务,安全测试评估, 安全标注,内容标识,产品和应用安全等标准。 2. 治理标准。结合人工智能治理实际需求,规范人工智能 的技术研发和运营服务等要求,包括人工智能鲁棒性、可靠性、
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeek入门精通20250204清华华大大学清华大学DeepResearch科研普通通人普通人如何抓住红利开源中国2023模型LLM技术报告人工智能人工智能安全治理框架1.0V2StrongEconomicalandEfficientMixtureofExpertsLanguageModel图解10PDF周鸿祎演讲我们带来创业机会360202502国家产业综合标准标准化体系建设指南2024
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩