积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部中文(简体)(10)中文(简体)(2)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    d-makes-deepseek-r1- distill-llama-70b-available 70B 邮箱注册,速度快,但感觉比Cerebras弱一些。 …… DeepSeek 三种模式对比 • 基础模型(V3):通用模型(2024.12),高效便捷,适用于绝大多数任务,“ ”任务 • 深度思考(R1):推理模型,复杂推理和深度分析任务,如数理逻辑推理和编程代码,“ ”任务 • 联网搜索:RAG(检索增强生成),知识库更新至 (稳定可控) 高风险 (不确定性高) (限定于文本生成任务) DeepSeek 两种模型对比 V3 R1 DeepSeek 两种模型对比 V3 R1 如何提问?两种模型的提示语差异 • 基础模型(V3):“过程-结果”清晰(指令) • 深度思考(R1):目标清晰,结果可以模糊(推理) RTGO提示语结构 Role(角色) 定义AI的角色: 经验丰富的数据分析师 具备十年销售经验的SaaS系统商务 角色: Mermaid图表代码生成器 功能: 根据用户提供的流程或架构描述,自动生成符合Mermaid语法的图表代码。 技能: 熟悉Mermaid的图表类型和语法,能高效将流程转化为代码。 理解流程分析、架构设计及结构化展示等领域知识。 约束: 代码必须符合Mermaid语法规范。 流程和结构表达需准确清晰。 流程图需要有二级、三级等多层级。 输出的代码格式应简洁且易于理解。
    0 码力 | 35 页 | 9.78 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    the dynamicrelationship between predators and prey. 中文学术写作润色指令 指令:作为中文学术论文写作优化助手,您的任务是改进所提供文本的拼写、语法、清晰度、简洁性和整体可读性, 同时分解长句,减少重复,并提供改进建议。请仅提供文本的更正版本,并附上解释。以 markdown 表格的形式提供 输出结果,每个句子单独成行。第一列为原句,第二列 1978)和栖息环境复杂程度,会影响 捕食以及捕食者与猎物之间的动态关系。 将"因子"替换为"因素",删除了 多余的”如:"和"等" 英文学术写作润色指令 指令:下面是一篇学术论文中的一个段落。润色文字以符合学术风格,改进拼写、语法、清晰度、简洁性和整体可 读性。必要时,重写整个句子。此外,用标记符表格列出所有修改,并解释修改原因。 原始文本 修正后文本 Numerous marine molluscs, including 其他常用中文指令 Prompts(指令) 跨学科融合:将“舆论分析”概念与其他领域的最新具有突破性的理论深度结合,提出极其具有创新的交叉领域的十个问题。 探索“舆论分析”概念的基础理论、哲学基础或科学原理等深层次原理,提出挑战这些基础的前所未有的突破性十个问题。 舆论分析这个概念在最前沿科技或理论中的潜在应用,列出十个充满想象力和震撼性,前所未有的应用。 如果要量化研究审美智能概念,请提出一个合理的
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 设计公平、包容的AI交互模式 预防和缓解AI可能带来的负面影响 提示语设计的核心技能体系不仅涵盖了技术层面的专 业知识,更强调了认知能力、创新思维和软实力的重 要性。 这些核心技能构成了提示语设计的基础,涵盖了从问 题分析到创意生成,再到结果优化的全过程。 语境理解能力使设计者能够在复杂的社会和文化背景 下工作;抽象化能力有助于提高工作效率和拓展应用 范围;批判性思考是确保AI应用可靠性和公平性的关 常见陷阱与应对:新手必知的提示语设计误区 缺乏迭代陷阱:期待一次性完美结果 陷阱症状: ▪ 过度复杂的初始提示语 ▪ 对初次输出结果不满意就放弃 ▪ 缺乏对AI输出的分析和反馈 应对策略: ▪ 采用增量方法:从基础提示语开始,逐步添加细节和要求。 ▪ 主动寻求反馈:要求AI对其输出进行自我评估,并提供改进建议。 ▪ 准备多轮对话:设计一系列后续问题,用于澄清和改进初始输出。 过度指令和模糊指令陷阱:当细节淹没重点或意图不明确
    0 码力 | 104 页 | 5.37 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 设计公平、包容的AI交互模式 预防和缓解AI可能带来的负面影响 提示语设计的核心技能体系不仅涵盖了技术层面的专 业知识,更强调了认知能力、创新思维和软实力的重 要性。 这些核心技能构成了提示语设计的基础,涵盖了从问 题分析到创意生成,再到结果优化的全过程。 语境理解能力使设计者能够在复杂的社会和文化背景 下工作;抽象化能力有助于提高工作效率和拓展应用 范围;批判性思考是确保AI应用可靠性和公平性的关 常见陷阱与应对:新手必知的提示语设计误区 缺乏迭代陷阱:期待一次性完美结果 陷阱症状: ▪ 过度复杂的初始提示语 ▪ 对初次输出结果不满意就放弃 ▪ 缺乏对AI输出的分析和反馈 应对策略: ▪ 采用增量方法:从基础提示语开始,逐步添加细节和要求。 ▪ 主动寻求反馈:要求AI对其输出进行自我评估,并提供改进建议。 ▪ 准备多轮对话:设计一系列后续问题,用于澄清和改进初始输出。 过度指令和模糊指令陷阱:当细节淹没重点或意图不明确
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    一、产业发展现状 人工智能是引领新一轮科技革命和产业变革的基础性 和战略性技术,正成为发展新质生产力的重要引擎,加速和 实体经济深度融合,全面赋能新型工业化,深刻改变工业生 产模式和经济发展形态,将对加快建设制造强国、网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 上下 游企业共同制定国际标准。 三、建设思路 (一)人工智能标准体系结构 人工智能标准体系结构包括基础共性、基础支撑、关键 技术、智能产品与服务、赋能新型工业化、行业应用、安全 /治理等 7 个部分,如图 1 所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、 图 1 人工智能标准体系结构图 (二)人工智能标准体系框架 人工智能标准体系框架主要由基础共性、基础支撑、关 键技术、智能产品与服务、赋能新型工业化、行业应用、安 全/治理等 7 个部分组成,如图 2 所示。 5 图 2 人工智能标准体系框架图 6 四、重点方向 (一)基础共性标准 基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map  向量数据库  数据库向量支持  大模型框架、微调 (Fine Tuning)  大模型训练平台与工具 基础设施 LLM Agent  备案上线的中国大模型  知名大模型  知名大模型应用 大模型 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg 4 / 32 LLM 基础设施 01 03 02 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek图解10页PDF

    . . . . . . . 4 2 DeepSeek 零基础必知 . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 LLM 基础概念 . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Transformer 基础架构 . . . . . . . . . . . . . 知识,严禁拿此资料引流、出书、等形式的商业活动 就是正式回答,如下图6所示: 图 6: deepseek-r1 回复之正式回答部分 2 DeepSeek 零基础必知 为了更深入理解 DeepSeek-R1,首先需要掌握 LLM 的基础知识,包括其工 作原理、架构、训练方法。 近年来,人工智能(AI)技术的快速发展催生了大型语言模型((Large Language Model, LLM))的兴起。LLM 是一种基于深度学习的人工智能模型,其核心目标是 通过预测下一个单词来理解和生成自然语言。训练 LLM 需要大量的文本数 据,使其能够掌握复杂的语言模式并应用于不同任务。 接下来,咱们先从较为基础的概念开始。 2.1 LLM 基础概念 模型参数。其中比较重要的比如deepseek-r1:1.5b, qwen:7b, llama:8b,这里的 1.5b, 7b、8b 代表什么?b 是英文的 billion,意思是十亿,7b
    0 码力 | 11 页 | 2.64 MB | 7 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    推理大模型 预训练大模型难以通往AGI之路  推理模型如R1——通过逻辑链条推导答案, 分解规划,自我反思  预训练范式像是记忆和模仿,强化学习范 式更像探索实践  记住很多东西只是基础,真正有价值的是 融会贯通 R1找到了人类通往AGI的方向 DeepSeek颠覆式创新——技术创新 27 DeepSeek-R1和GPT-4o不是同一个物种政企、创业者必读 快思考 慢思考 基于DeepSeek的强推理模型,利用科学领域专业知识进行强化学习, 能够打造更加专业的科学推理模型 DeepSeek六大应用方向之五 科学研究:打造科研新范式 44政企、创业者必读 AI For Science,为基础科学带来革命性变化 2024诺贝尔化学奖颁发给研发AlphaFold的两位AI专家 未来所有科学研究都将以AI为中心 过去如何做蛋白质研究 AlphaFold 1. X射线晶体衍射 2. 核磁共振 语言翻译 文本创作 自动驾驶 具身智能 1 2 4 5 知识问答 代码编程 文本生成 多轮对话 图像生成 视频生成 音频生成 A I 数字人 生物制药 新材料研究 脑机接口 基础科学 能源自由 宇宙探索 生命科学 科学 能力 6 AI Fo r Science 知识管理( 内部知识管理、 外部情报分析、 大数据分析、 工作流知识) 专家经验模型( 专业模型训练) 业务流程自动化(
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术 提高攻击效率,包括挖掘利用漏洞、破解密码、生成恶意代码、发送钓鱼邮件、 网络扫描、社会工程学攻击等,降低网络攻击门槛,增大安全防护难度。 (e)模型复用的缺陷传导风险。依托基础模型进行二次开发或微调,是 常见的人工智能应用模式,如果基础模型存在安全缺陷,将导致风险传导至下 游模型。 3.2.2 现实域安全风险 (a)诱发传统经济社会安全风险。人工智能应用于金融、能源、电信、交通、 民生等传统行 强风险识别、检测、 防护,防止因平台恶意行为或被攻击入侵影响承载的人工智能模型或系统。- 9 - 人工智能安全治理框架 (c)加强人工智能算力平台和系统服务的安全建设、管理、运维能力, 确保基础设施和服务运行不中断。 (d)对于人工智能系统采用的芯片、软件、工具、算力和数据资源,应 高度关注供应链安全。跟踪软硬件产品的漏洞、缺陷信息并及时采取修补加固 措施,保证系统安全性。 4.2
    0 码力 | 20 页 | 3.79 MB | 28 天前
    3
  • pdf文档 普通人学AI指南

    普通人学 AI 指南 作者:郭震 日期:2024 年 6 月 8 日 Contents 1 AI 大模型基础 4 1.1 AIGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 AGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 大模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 基础概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 上下文窗口 . . . . . . . . . . . . . . . . 37 5.7 创建知识库应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 1 AI 大模型基础 1.1 AIGC AIGC 是指使用人工智能模型生成内容的技术。这些内容可以包括图像、音频、 文本、视频、3D 模型等。具体来说,AIGC 技术可以生成如下类型的内容: • 图像:如照片、原创艺术作品
    0 码力 | 42 页 | 8.39 MB | 7 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
清华华大大学清华大学第二DeepSeek赋能职场DeepResearch科研入门精通20250204国家人工智能人工智能产业综合标准标准化体系建设指南2024开源中国2023模型LLM技术报告图解10PDF周鸿祎演讲我们带来创业机会360202502安全治理框架1.0普通通人普通人AI
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩