积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(5)zh(2)中文(简体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    natural language processing and LLMs, a prompt is an input provided to the model to generate a response or prediction. Prompt Engineering February 2025 8 These prompts can be used to achieve various number of tokens to generate in a response. Generating more tokens requires more computation from the LLM, leading to higher energy consumption, potentially slower response times, and higher costs. Prompt useless tokens after the response you want. Be aware, generating more tokens requires more computation from the LLM, leading to higher energy consumption and potentially slower response times, which leads to
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    solutions. Getting AI into the hands of these experts can be far more powerful than trying to build generic or horizontal solutions. BBVA, the global banking leader, has more than 125,000 employees, each instantly access customer data and relevant knowledge articles, then incorporate the results into response emails or specific actions—such 
 as updating accounts or opening support tickets. By embedding
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    adopt and govern it. *Inference = Fully-trained model generates predictions, answers, or content in response to user inputs. This phase is much faster and more efficient than training. Next Frontier For AI consumer prices. Per OpenAI, 100 AI ‘tokens’ generates approximately 75 words in a large language model response; data shown indexes to this number of tokens. ‘Year 0’ is not necessarily the year that the technology Richard Hirsh 0% 25% 50% 75% 100% 0 20 40 60 80 Electric Power Computer Memory ChatGPT: 75-Word Response % of Original Price By Year (Indexed to Year 0) AI Model Compute Costs High / Rising + Inference
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    including both gastropods and bivalves, show phenotypicplasticity in their shell morphology in response to predation risk (Appleton & Palmer1988, Trussell & Smith 2000, Bourdeau 2010). Predation can including both gastropods and bivalves, exhibit phenotypic plasticity in their shell morphology in response to predation risk. Predation can act as a directional selection pressure, resulting in specific
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    NN/ACL/CMSIS-NN and TVM ○ Integrate optimized ACL/CMSIS-NN kernels into TVM? ○ Implement Arm NN generic backend in TVM for more flexibility with the runtime plugins? ○ Integrate TVM codegen into Arm NN
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    者提供……策略支撑 Objective(操作要 求) 字数要求、段落结构、用词风格、 内容要点、输出格式… CO-STAR提示语框架 新加坡 GPT-4 提示工程竞赛冠军提示词框架 "R",代表 "Response", 想要的回应类型。 一份详细的研究 报告?一个表格? Markdown格式? "C"代表 “Context(上 下文)” 相关的 背景信息,比如 你自己或是你希 望它完成的任务 的信息。
    0 码力 | 35 页 | 9.78 MB | 7 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    run() 01 A final-output tool is invoked, defined by a specific output type 02 The model returns a response without any tool calls (e.g., a direct user message) Example usage: Python 1 Agents.run(agent, [UserMessage(
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    Dynamic codegen: kernel dispatch (proposal) Relay op: conv2d Default function FTVMStrategy A generic function CPU strategy func GPU strategy func OpStrategy OpStrategy OpStrategy Default implement
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    ?, a safety reward model ???? ????, and a rule-based reward model ??????. The final reward of a response ?? is ?? = ?1 · ??ℎ??? ???(??) + ?2 · ???? ????(??) + ?3 · ??????(??), (36) where ?1, ?2, and
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7OpenAIAIintheEnterpriseTrendsArtificialIntelligence清华大学DeepSeekDeepResearch科研TVMMeetupNov16thLinaro清华华大大学第二赋能职场practicalguidetobuildingagentsDynamicModelV2StrongEconomicalandEfficientMixtureofExpertsLanguage
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩