积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(5)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenAI - AI in the Enterprise

    Eval Frameworks. 7 AI in the EnterpriseEvals defined Evaluation is the process of validating and testing the outputs that your models produce. Rigorous evals lead to more stable, reliable applications support. These results didn’t happen overnight. Klarna achieved this performance by continuously testing and refining the assistant. Just as importantly, 90% of Klarna’s employees now use AI in their automate workflows that previously required human intervention, such as: Automating software testing and QA using Operator to interact with web apps 
 like a real user, flagging any UI issues. Updating
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    packages import numpy as np from tvm import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.get_workload(batch_size=1) 3. Partition and build the network with an external codegen your_codegen_name>/graph_annotator.py ● Apply the annotator to a workload: mod, params = relay.testing.mobilenet.get_workload(batch_size=1) mod[‘main’] = MyAnnotator().visit(mod[‘main’]) mod = relay.build_extern(mod
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Focus – Global CMOs = 75% Using / Testing AI Tools % of Survey Responses 0% 25% 50% 75% Plan on Start Testing Within 1-2 Years Fully Implemented Plan on Start Testing Within 12 Months Running Initial Ark Design AI AI Developer Use Cases – 2024, per IBM Code Generation Bug Detection & Fixing Testing Automation Project / Workflow Management Documentation Refactoring & Optimization Security
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    for compressive force (shell strength)following Burnett and Belk (2018). A universal material+testing machine(MTS System Corporation, Eden Prairie, MIN, USA, Model 661; Fig1,)was used to determine for compressive force (shell strength)following Burnett and Belk (2018). A universal material-testing machine (MTS System Corporation, Eden Prairie, MN, USA, Model 661; Fig. 1) was used to determine
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    flexibility with the runtime plugins? ○ Integrate TVM codegen into Arm NN? ● CI and benchmark testing for TVM on member hardware platforms ○ Shall we maintain a list of Arm platforms supported by TVM
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    Engineering February 2025 60 A good rule of thumb is to start with 6 few shot examples and start testing the accuracy from there. Adapt to model updates It’s important for you to stay on top of model architecture
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Length (#Tokens) 0 9 18 27 36 45 55 64 73 82 91 100 Document Depth Percent (%) Pressure Testing DeepSeek-V2 Base 128K Context via "Needle In A HayStack" 1 2 3 4 5 6 7 8 9 10 Score Figure
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
OpenAIAIintheEnterpriseBringYourOwnCodegentoTVMTrendsArtificialIntelligence清华大学DeepSeekDeepResearch科研MeetupNov16thLinaroGooglePromptEngineeringv7V2StrongEconomicalandEfficientMixtureofExpertsLanguageModel
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩