积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(19)人工智能(19)

语言

全部中文(简体)(7)zh(5)英语(4)中文(简体)(2)ro(1)

格式

全部PDF文档 PDF(18)TXT文档 TXT(1)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 19 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • zh
  • 英语
  • 中文(简体)
  • ro
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Manus AI:Agent元年开启

    ChatGPT!"GAIçèûÞ&> • AI*+uv5´µ#$GManusuv,!"#$%AI*+,)`%&R<º»JK> • ÑÒÓ*5'de() • ManusêëF-*Bz'()+,-,Manus./I6¦Gdeáâ(),012÷345de> !"#$%Bloomberg*&'()7 Manus AI%6789: • 67,89:;<щ=>?Š@&ACEO,BC‡DF<Ñg[> SwarmcMulti-agent Orchestrator> • 7⃣ de´.«Model Routing¬5š›6¦ AI de•„G()µ¶C𷏤> • *˜5MartiancOpenRoutercNot Diamond> • 8⃣ ¡¹gde«Foundational Models¬5bº AI de,»4 AI *+¼½()> • 9⃣ ETL«]^á²2¾¿¬5š›]^¥+CA+ AI ÓÔC#+>12 !"#$%Bloomberg*&'() >$2%AgentFG?@HIJKLM ]^ º»¨ 2C 2B ÕÖ Fp º» #&Õ¥+ $%AI§¨ #&DE AgentŸ Ö×AgentS) cCÕ 'Agent ØCKx¦13 !"#$%Bloomberg*&'() >$2%AgentFG?@HIJKLM p Workday#$ Agent
    0 码力 | 23 页 | 4.87 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    https://github.com/meta-llama/llama3/bl ob/main/MODEL_CARD.md. J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai. Gqa: Training generalized multi-query transformer models from multi-head Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    INCORPORATED 3 Multi-Vendor Support MOTIVATION©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 4 Terasic DE10-Nano DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 5 Software - CMA Setup Environment Variables Navigate to 3rdparty/cma and build kernel module Copy kernel module to DE10-Nano and Install Module CMA API Reference©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 7 INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 8 Hardware Configure Chisel VTA for DE10-Nano DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 9 Hardware Datapath
    0 码力 | 12 页 | 1.35 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    Build systems to support emerging tensor instructionsTensorization Challenge C = tvm.compute((m, n), 
 lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k)) Computation Specification (Tensor Expression) out=%b) }
 def @te_add_one(%a: NDArray, %b: NDArray) { var %n %A = decl_buffer(shape=[%n], src=%a) %B = decl_buffer(shape=[%n], src=%b) for %i = 0 to 10 [data_par] { %B[%i] = Support @tvm.hybrid def te_add_one(a, b): n = var(“n”) A = bind_buffer(shape=[n], a) B = bind_buffer(shape=[n], b) for i in iter_range(n, iter_type=”data_par”): A[i] = B[i] + 1

    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    AI Focus – Global Enterprises = Growth & Revenue…Not Cost Reduction Note: Survey conducted 5/24, N=427. US-based companies = 43%, Japan 15%, UK 14%, France 14%, Germany 14%. Industry mix: 18% Technology marketing executives worldwide are using generative AI for marketing activities. Survey conducted 7/24, N = 300 marketing executives at companies with 500+ employees worldwide. Survey geos: Australia, Belgium Pew Research study on ChatGPT use, n=10,133 USA adults. Those who did not give an answer are not shown. 1/25 data per Elon University study on use of any AI models, n=500 USA adults,. Figures estimated
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • text文档 00 Deepseek官方提示词

    。 USER 下面这段的代码的效率很低,且没有处理边界情况。请先解释这段代码的问题与解决方法,然后进行优化: ``` def fib(n): if n <= 2: return n return fib(n-1) + fib(n-2) ``` 8. 代码解释:对代码进行解释,来帮助理解代码内容。 USER 请解释下面这段代码的逻辑,并说明完成了什么功能: ```
    0 码力 | 4 页 | 7.93 KB | 7 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    movie reviews as positive, neutral or negative. Model gemini-pro Temperature 0.1 Token Limit 5 Top-K N/A Top-P 1 Prompt Classify movie reviews as POSITIVE, NEUTRAL or NEGATIVE. Review: "Her" is a disturbing longer response. Goal Parse pizza orders to JSON Model gemini-pro Temperature 0.1 Token Limit 250 Top-K N/A Top-P 1 Prompt Parse a customer's pizza order into valid JSON: EXAMPLE: I want a small pizza with write code in Bash to rename files in a folder. Model gemini-pro Temperature 0.1 Token Limit 1024 Top-K N/A Top-P 1 Prompt Write a code snippet in Bash, which asks for a folder name. Then it takes the contents
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    input matrices: inadexO, indexI 。 Compare the access indices with the axis/reduce_axis of ComputeOp n matrix_b [idx0, idxl] k mm matrix_a matrix_c [idx0, idx1] In, m] index0 indexl K m :matrix a m k matrix_a k n :matrix_b n k matrix_b coLmajor row_major row_major col_ major Thread Index Unification minimize(1oss) Loss Scaling in PAI-TF Loss Scaling the loss using S 了 Backward propagation in MP N 放gradients( Y ) Unscaled gradients Zero gr: adients Apply gradients 计算平台事业部 COMPUTING PLATFORM
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    -mattr=+neon GPU mali (midgard) firefly rk3399, rock960 (mali t860) N/A opencl bifrost hikey960 (mali g71) N/A FPGA vta pynq, ultra96 N/A sdaccel Out-of-tree support or WIP: Hexagon DSP (via llvm), Ascend
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    (%) AI https://chat.deepseek.com Z u N e P 6 7 K w S v L C q Y 4 Y V 1 T 8 0 u m B k k m O x d k C i y K r j i 6 n p Y d O w t v B 4 G 0 G p y 与模长乘积的比值,评估文本间的相似性,取值范围为[-1, 1], 值越接近1表示相似性越高。该方法广泛应用于信息检索和自 然语言处理领域,可有效评估文本内容的相似程度。 重复率计算 使用n-gram方法(n=2),将生成文本分为连续的2-gram片 段,统计重复片段的比例。这个方法能够识别文本冗余信息并 评估内容多样性,特别适用于长文本生成。 最终智能体知识循环边界公式如下。其中,权重w1=0
    0 码力 | 65 页 | 4.47 MB | 7 月前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
ManusAIAgent元年开启DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelDeployVTAonIntelFPGATVMWhereAreWeGoingTrendsArtificialIntelligence00Deepseek官方提示GooglePromptEngineeringv7PAIMeetupShanghai20191116Nov16thLinaro清华华大大学清华大学普通通人普通人如何抓住红利
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩