积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(10)数据库中间件(10)

语言

全部中文(简体)(9)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.108 秒,为您找到相关结果约 10 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    根据解析上下文匹配用户配置的分片策略,并生成路由路径。目前支持分片路由和广播路由。 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 SQL 执行 通过多线程执行器异步执行。 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 接口输出。结果归并包括流式归并、内存归并和使用装饰 者模式的追加归并这几种方式。 解析引擎 相对于其他编程语言,SQL 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    路由路径。目前支持分片路由和广播路由。 7.1.3 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 7.1.4 SQL 执行 通过多线程执行器异步执行。 7.1.5 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 接口输出。结果归并包括流式归并、内存归并和使用装饰 者模式的追加归并这几种方式。 7.1.6 查询优化 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    路由路径。目前支持分片路由和广播路由。 7.2.3 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 7.2.4 SQL 执行 通过多线程执行器异步执行。 7.2. 数据分片 226 Apache ShardingSphere document, v5.1.1 7.2.5 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    路由路径。目前支持分片路由和广播路由。 7.4.3 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 7.4.4 SQL 执行 通过多线程执行器异步执行。 7.4.5 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 接口输出。结果归并包括流式归并、内存归并和使用装饰 者模式的追加归并这几种方式。 7.4.6 查询优化 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    路径。目前支持分片路由和广播路由。 12.4.3 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 12.4.4 SQL 执行 通过多线程执行器异步执行。 12.4.5 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 接口输出。结果归并包括流式归并、内存归并和使用装饰 者模式的追加归并这几种方式。 12.4.6 查询优化 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    路由路径。目前支持分片路由和广播路由。 7.2.3 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 7.2.4 SQL 执行 通过多线程执行器异步执行。 7.2. 数据分片 221 Apache ShardingSphere document, v5.1.0 7.2.5 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    路径。目前支持分片路由和广播路由。 12.4.3 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 12.4.4 SQL 执行 通过多线程执行器异步执行。 12.4.5 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 接口输出。结果归并包括流式归并、内存归并和使用装饰 者模式的追加归并这几种方式。 12.4.6 查询优化 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    路由路径。目前支持分片路由和广播路由。 7.2.3 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 7.2.4 SQL 执行 通过多线程执行器异步执行。 7.2. 数据分片 237 Apache ShardingSphere document, v5.1.2 7.2.5 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    路径。目前支持分片路由和广播路由。 12.4.3 SQL 改写 将 SQL 改写为在真实数据库中可以正确执行的语句。SQL 改写分为正确性改写和优化改写。 12.4.4 SQL 执行 通过多线程执行器异步执行。 12.4.5 结果归并 将多个执行结果集归并以便于通过统一的 JDBC 接口输出。结果归并包括流式归并、内存归并和使用装饰 者模式的追加归并这几种方式。 12.4.6 查询优化 将产生落在同库不同表的大量真实 SQL ,如 果每条真实 SQL 都占用一个独立的连接,那么一次查询无疑将会占用过多的资源。 从执行效率的角度看,为每个分片查询维持一个独立的数据库连接,可以更加有效的利用多线程来提升 执行效率。为每个数据库连接开启独立的线程,可以将 I/O 所产生的消耗并行处理。为每个分片维持一个 独立的数据库连接,还能够避免过早的将查询结果数据加载至内存。独立的数据库连接,能够持有查询 使用此模式的前提是,ShardingSphere 对一次操作所耗费的数据库连接数量不做限制。如果实际执行的 SQL 需要对某数据库实例中的 200 张表做操作,则对每张表创建一个新的数据库连接,并通过多线程的 方式并发处理,以达成执行效率最大化。并且在 SQL 满足条件情况下,优先选择流式归并,以防止出现 内存溢出或避免频繁垃圾回收情况。 连接限制模式 使用此模式的前提是,ShardingSphere
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 01 Sharding JDBC概览

    根据解析上下文匹配用户配置的分片策略,并生成路由路径。目前支持分片路由和广播路由。 SQL改写 将SQL改写为在真实数据库中可以正确执行的语句。SQL改写分为正确性改写和优化改写。 SQL执行 通过多线程执行器异步执行。 结果归并 将多个执行结果集归并以便于通过统一的JDBC接口输出。结果归并包括流式归并、内存归并和 使用装饰者模式的追加归并这几种方式。 1.8 规划线路图
    0 码力 | 6 页 | 781.70 KB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
ApacheShardingSphere中文文档5.0alpha5.15.25.45.3v501ShardingJDBC概览
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩