积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(26)数据库中间件(26)

语言

全部中文(简体)(14)英语(8)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.123 秒,为您找到相关结果约 26 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    . . . . . . . . . . . . . . . . . . . . . . . 444 xii 1 Overview Stargazers Over Time Contributors Over Time Apache ShardingSphere is positioned as a Database Plus, and aims at building a standard Apache ShardingSphere document, v5.1.1 1.3 Roadmap 1.3. Roadmap 6 2 Quick Start In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere. 2.1 ShardingSphere-JDBC Data is increasing explosively, the data storage and computing method are facing innovation all the time. Transaction, big data, association analysis, Internet of things and other scenarios subdivided quickly
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    Mass data high concurrency in OLTP scenarios . . . . . . . . . . . . . . . . . . . 19 Mass data real‐time analysis in OLAP scenarios . . . . . . . . . . . . . . . . . . . 20 3.1.5 Related References . . provides access to high‐availability computing services based on stateless ser‐ vices. At the same time, it can sense and use the underlying database’s HA solution to achieve its overall high availability suggest using cluster mode in production environment. 1.3. Deployment 10 2 Quick Start In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere. Example Codes:
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    . . . . . . . . . . . . . . . . . . . . . . . 489 xii 1 Overview Stargazers Over Time Contributors Over Time Apache ShardingSphere is positioned as a Database Plus, and aims at building a standard Apache ShardingSphere document, v5.1.2 1.3 Roadmap 1.3. Roadmap 6 2 Quick Start In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere. Example Codes: Data is increasing explosively, the data storage and computing method are facing innovation all the time. Transaction, big data, association analysis, Internet of things and other scenarios subdivided quickly
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    Mass data high concurrency in OLTP scenarios . . . . . . . . . . . . . . . . . . . 18 Mass data real‐time analysis in OLAP scenarios . . . . . . . . . . . . . . . . . . . 19 3.1.5 Related References . . to check out the mailing list and discuss via mail. 1.5. Roadmap 9 2 Quick Start In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere. Example Codes: will increase the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    Mass data high concurrency in OLTP scenarios . . . . . . . . . . . . . . . . . . . 22 Mass data real‐time analysis in OLAP scenarios . . . . . . . . . . . . . . . . . . . 23 8.1.5 Related References . . are welcome to check out the mailing list and discuss via mail. 13 7 Quick Start In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere. Example Codes: will increase the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    Mass data high concurrency in OLTP scenarios . . . . . . . . . . . . . . . . . . . 22 Mass data real‐time analysis in OLAP scenarios . . . . . . . . . . . . . . . . . . . 23 8.1.5 Related References . . are welcome to check out the mailing list and discuss via mail. 13 7 Quick Start In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere. Example Codes: will increase the disk IO access number, and thereby, weaken the performance of query. In the same time, high concurrency requests also make the centralized database to be the greatest limitation of the
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    . . . . . . . . . . . . . . . . . . . . . . . . 391 x 1 Overview Stargazers Over Time Contributors Over Time Apache ShardingSphere is positioned as a Database Plus, and aims at building a new criterion Apache ShardingSphere document, v5.0.0 1.3 Roadmap 1.3. Roadmap 6 2 Quick Start In shortest time, this chapter provides users with a simplest quick start with Apache ShardingSphere. 2.1 ShardingSphere-JDBC Data is increasing explosively, the data storage and computing method are facing innovation all the time. Transaction, big data, association analysis, Internet of things and other scenarios subdivided quickly
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    sfunc = avg_transfn, finalfunc = avg_finalfn) CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g; CREATE SCHEMA alt_nsp1; ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2; sfunc = avg_transfn, finalfunc = avg_finalfn) CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g; CREATE SCHEMA alt_nsp1; ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2; 运算表达式中包含分片键 当分片键处于运算表达式中时,无法通过 SQL 字面提取用于分片的值,将导致全路由。 例如,假设 create_time 为分片键: SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01'; 实验性支持 实验性支持特指使用 Federation 执行引擎提供支持。该
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    sfunc = avg_transfn, finalfunc = avg_finalfn) CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g; CREATE SCHEMA alt_nsp1; ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2; sfunc = avg_transfn, finalfunc = avg_finalfn) CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g; CREATE SCHEMA alt_nsp1; ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2; 运算表达式中包含分片键 当分片键处于运算表达式中时,无法通过 SQL 字面提取用于分片的值,将导致全路由。 例如,假设 create_time 为分片键: SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01'; 实验性支持 实验性支持特指使用 Federation 执行引擎提供支持。该
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    sfunc = avg_transfn, finalfunc = avg_finalfn) CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g; CREATE SCHEMA alt_nsp1; ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2; sfunc = avg_transfn, finalfunc = avg_finalfn) CREATE TABLE agg_data_2k AS SELECT g FROM generate_series(0, 1999) g; CREATE SCHEMA alt_nsp1; ALTER AGGREGATE alt_agg3(int) OWNER TO regress_alter_generic_user2; 运算表达式中包含分片键 当分片键处于运算表达式中时,无法通过 SQL 字面提取用于分片的值,将导致全路由。 例如,假设 create_time 为分片键: SELECT * FROM t_order WHERE to_date(create_time, 'yyyy-mm-dd') = '2019-01-01'; 实验性支持 实验性支持特指使用 Federation 执行引擎提供支持。该
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
ApacheShardingSphere5.1Document5.25.4v55.0document中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩