积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(78)OpenShift(33)机器学习(24)Kubernetes(4)Service Mesh(4)VMWare(3)RocketMQ(3)云原生CNCF(3)Hadoop(2)Docker(1)

语言

全部中文(简体)(73)英语(3)中文(简体)(2)

格式

全部PDF文档 PDF(77)DOC文档 DOC(1)
 
本次搜索耗时 0.053 秒,为您找到相关结果约 78 个.
  • 全部
  • 云计算&大数据
  • OpenShift
  • 机器学习
  • Kubernetes
  • Service Mesh
  • VMWare
  • RocketMQ
  • 云原生CNCF
  • Hadoop
  • Docker
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-时间序列总结

    1 2022年01月 时间序列总结 黄海广 副教授 2 学习目标 了解 什么是时间序 列,ARIMA 1 2 掌握 时间序列的基本 操作 掌握 时期,重采样 3 4 熟悉 滑动窗口的使用 3 目录 01 时间序列的基本操作 02 固定频率的时间序列 03 时间周期及计算 04 重采样 05 数据统计—滑动窗口 06 时序模型—ARIMA 4 1.时间序列的基本操作 01 时间序列的基本操作 02 固定频率的时间序列 03 时间周期及计算 04 重采样 05 数据统计—滑动窗口 06 时序模型—ARIMA 5 问题 思考: 什么是时间序列? 6 时间序列的概念 时间序列是指多个时间点上形成的数值序列,它既可 以是定期出现的,也可以是不定期出现的。 7 时间序列的数据种类 时间序列的数据种类 时间序列的数据主要有以下几种: 时间戳 表示特定的时刻 ,比如现在 时期 比如2018年或者 2018年10月 时间间隔 由起始时间戳和 结束时间戳表示 8 创建时间序列 Pandas中,时间戳使用Timestamp(Series派生的子 类)对象表示。 该对象与datetime具有高度的兼容性,可以直接通过 to_datetime()函数将datetime转换为TimeStamp对象。
    0 码力 | 67 页 | 1.30 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-11深度学习-序列模型

    2023年05月 深度学习-序列模型 黄海广 副教授 2 03 长短期记忆(LSTM) 04 双向循环神经网络 本章目录 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 3 03 长短期记忆(LSTM) 04 双向循环神经网络 1.序列模型概述 01 序列模型概述 02 循环神经网络(RNN) 循环神经网络(RNN) 05 深层循环神经网络 4 1.序列模型概述 循环神经网络(RNN)之类的模型在语音识别、自然语言处理和 其他领域中引起变革。 5 数学符号 在这里?<1>表示Harry这个单词,它就是一个第 4075行是1,其余值都是0的向量(上图编号1所示 ),因为那是Harry在这个词典里的位置。 ?<2>是第6830行是1,其余位置都是0的向量(上 图编号2所示)。  基于语言模型(LM),故可以捕捉时序规则信息  它是如何实现的? 7 03 长短期记忆(LSTM) 04 双向循环神经网络 2.循环神经网络(RNN) 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 8 2.循环神经网络(RNN) ?<1> = ?1(????<0> + ????<1> + ??) ̰? <1>
    0 码力 | 29 页 | 1.68 MB | 1 年前
    3
  • pdf文档 时间序列预测

    时间序列预测 主讲人:龙良曲 Predict next Sample data Network Train Predict 下一课时 RNN训练难题 Thank You.
    0 码力 | 9 页 | 572.18 KB | 1 年前
    3
  • pdf文档 时间序列表示

    时间序列表示 主讲人:龙良曲 Spatial Signals Temporal Signals? Sequence http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf Sequence representation ▪ [seq_len, feature_len] [100, 1] [28, 28] [words, word_vec]
    0 码力 | 14 页 | 1.16 MB | 1 年前
    3
  • pdf文档 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    PYCON CHINA 基于深度学习的多维时间序列 预测在数据机房中的应用 目 录 1 背景介绍 2 研究目标 3 研究内容 4 后续工作 1. 背景介绍 数据机房面临的能耗问题 数据机房面临电量消耗巨大的问题 空调是数据机房中电量消耗最大的设备 空调为什么那么耗电?怎么优化节能? 低效的 冷却装 置 服务主 机工作 发热 影响空 调耗电 量原因 建筑材料 隔热和散 3. 研究内容 ⚫ 时间序列预测方法的比较 传统时间序列预测 ⚫ 对单个维度历史信息进行 预测 ⚫ 捕获简单线性关系,模型 简单 ⚫ 代表算法有AR, ARIMA 基于深度学习的 时间序列预测 ⚫ 利用多维时间序列之间的 信息 ⚫ 对变周期序列,多维空间 依赖序列预测较弱 ⚫ 代表算法有RNN,LSTM 混合多维时间序列预测 ⚫ 提取多维序列之间更加复杂 的关系 ⚫ 提取维度之间空间依赖关系, 提取维度之间空间依赖关系, 长短期依赖关系 ⚫ 算法有LSTNet,TPA-LSTM 多维时间序列预测方法解决机房温度预测 对数据包含的信息提取能力越来越强 选择 LSTNet 作为温度预测建模算法 ⚫ Convolutional Layer 捕捉时间维度上的短期依赖和维度之间的空间依赖关系 ⚫ Recurrent and Recurrent-skip layer 捕捉长期宏观依赖和周期性信息
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 vi 8 循环神经网络 289 8.1 序列模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 8 3 自然语言统计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 8.3.4 读取长序列数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 8.4 循环神经网络 . . . 365 9.6.3 合并编码器和解码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 9.7 序列到序列学习(seq2seq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 9.7.1 编码器 .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . 12 3.1.5.4 基于 LSTM 的序列分类: . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.5.5 基于 1D 卷积的序列分类: . . . . . . . . . . . . . . . . . . . . . . 14 3.1.5.6 基于栈式 LSTM 的序列分类 . . . . . . . . . . . . 编写你自己的 Keras 层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6 数据预处理 118 6.1 序列预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.1.1 TimeseriesGenerator 遵循减少认知困难的最佳实践:它提供一致且简单的 API,将常见用例所需的用户 操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 • 模块化。模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽 可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函 数、正则化方法,它们都是可以结合起来构建新模型的模块。 • 易扩展性。新的模块是很容易添
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    相机姿态恢复与场景三维结构恢复 • 求解相机参数和三维点云 • 如何处理循环回路序列和多视频序列? • 如何高效高精度地处理大尺度场景? • 如何处理动态场景? • 如何处理快速运动和强旋转? 复杂环境下的主要挑战 我们课题组的工作 • 面向大尺度场景的运动恢复结构 • ENFT-SFM:能够高效地处理大尺度场景下拍摄的循环回路和多 视频序列。 • 单目视觉的同时定位与地图构建 • ENFT-SL 速运动和强 旋转 。 ENFT-SFM: Efficient Non- Consecutive Feature Tracking for Robust SFM 循环回路序列和多视频序列 • 如何将不同子序列上的相同特征点高效地匹配上? • 如何高效地进行全局优化,消除重建漂移问题? VisualSFM 结果 ENFT:高效的非连续帧特征跟踪 基于两道匹配的连续帧跟踪 • 抽取SIFT特征 匹配结果比较 第一道匹配 (53个匹配对) 直接极线上搜索 (增加了11个匹配对) 第二道匹配 (增加了346个匹配对) 非连续帧上的特征点轨迹匹配 • 快速匹配矩阵估计 • 检测有公共内容的子序列进行特征轨迹匹配 快速匹配矩阵估计 • 每个轨迹有一组描述向量 • 特征轨迹描述量 • 采用分层的K-means方法进行轨迹描述量聚类 快速匹配矩阵估计 非连续特征轨迹匹配 • 同时进行图像对的特征匹配和优化匹配矩阵
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    可以使用非监督语料训练字词向量提升效果 文本分类 CNN RNN CLSTM 序列标注 传统机器学习(CRF) • 需要大量特征工程 • 不同领域需要反复调整 深度学习(Bi-LSTM+CRF) • 多领域通用 • 输入层采用词向量,提升泛化能力 • 循环神经网络(LSTM,GRU等)能学 到一些较远的的上下文特征以及一些 非线性特征 序列标注 字/词向量 Bi-LSTM 会 数 据 开 观 达 深度学习内部注意力机制的引入 l 内部注意力机制在解码器里面做 l 关注已生成词,解决长序列摘要生成时,个别字词重复出现的问题 Bi_LSTM Bi_LSTM Bi_LSTM RNN RNN 解码器内部注意力机制 输入序列 输入序列 输入序列。。。 编码器 解码器 摘要序列。。。 摘要序列 Rouge指标优化 Reward 文本摘要候选集 生成 更新模型 反馈 增强学习优化 Bi_LSTM Bi_LSTM RNN RNN Rouge指标优化 Reward 文本摘要候选集 生成 解码器内部注意力机制 编码器 解码器 深度学习摘要生成式模型 输入序列 输入序列 输入序列。。。 摘要序列。。。 摘要序列 更新模型 评分 返回 增强学习优化模块 最优摘要结果 生成式摘要 知识图谱关系抽取:联合学习方法 输入句子 命名实体识别 和关系分类 输出 美国总统特朗普将访问中国。
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    使得它不能够并行计算,模型效率十分低。 在没有transformer的时候,我们 都是用什么来完成这系列的任务 的呢? 5 1.Transformer介绍 Seq2Seq任务 Seq2Seq 任务指的是输入和输出都是 序列的任务,输出的长度不确定时采 用的模型,这种情况一般是在机器翻 译的任务中出现,将一句中文翻译成 英文,那么这句英文的长度有可能会 比中文短,也有可能会比中文长,所 以输出的长度就不确定了。 容?当过载信息映入眼帘时,我 们的大脑会把注意力放在主要的 信息上,这就是大脑的注意力机 制。 8 1.Transformer介绍 每个词的Attention计算 每个词的Q会跟整个序列中每一个K计算得分,然后基于得分再分配特征 Q: query,要去查询的 K: key,等着被查的 V: value,实际的特征信息 9 1.Transformer介绍 Attention的优点 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 NIPS上发表了Attention is all you need的文章,开创性地提出了 在序列转录领域,完全抛弃 CNN和RNN,只依赖Attention-注 意力结构的简单的网络架构, 名为Transformer;论文实现的 任务是机器翻译。 Transformer结构 Multi-Head
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
共 78 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
机器学习课程温州大学时间序列总结11深度模型PyTorch入门实战49预测46表示13杨赛赛基于多维数据数据机房中应用动手v2KerasPython复杂环境视觉同时定位地图构建Qcon北京2018文本智能处理技术陈运文Transformer
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩