积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(176)VirtualBox(112)Apache Kyuubi(26)Pandas(17)机器学习(6)Kubernetes(3)Istio(3)rancher(2)云原生CNCF(2)Service Mesh(2)

语言

全部英语(166)中文(简体)(8)中文(繁体)(1)英语(1)

格式

全部PDF文档 PDF(162)其他文档 其他(13)PPT文档 PPT(1)
 
本次搜索耗时 0.101 秒,为您找到相关结果约 176 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Kubernetes
  • Istio
  • rancher
  • 云原生CNCF
  • Service Mesh
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 25-云原生应用可观测性实践-向阳

    Technology Co., Ltd. All rights reserved. 云原生应用可观测性实践 向阳 @ 云杉网络 2021-12-08 simplify the growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 可观测性 - What & Why 云原生社区可观察性SIG-定义 demo! 目录 simplify the growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 可观测性的成熟度模型 1.0 基础支柱 2.0 ? 3.0 ? simplify the growing complexity © 2021, YUNSHAN Networks Technology growing complexity © 2021, YUNSHAN Networks Technology Co., Ltd. All rights reserved. 开箱即用的解决方案 Metrics, tracing, and logging 2017.02.21 Peter Bourgon simplify the growing complexity © 2021,
    0 码力 | 39 页 | 8.44 MB | 6 月前
    3
  • pdf文档 构建统一的云原生应用 可观测性数据平台

    统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing complexity. 统一的可观测性数据平台 telegraf 看云网更清晰 Simplify the growing complexity. 挑战:数据孤岛、资源开销 数据 孤岛 资源消耗 telegraf 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing complexity. OpenTelemetry的方法 统一的上下文 以追踪为核心 看云网更清晰 Simplify the growing complexity. OpenTelemetry的方法 Tag, Exemplars (TraceID, SpanID) Tag & Tag 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ① Trace与「非Request scope」的Metrics 例如:响应Request A的实例在一段时间内做了多少次GC? ① 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ② 应用、系统、网络的Metrics之间 例
    0 码力 | 35 页 | 6.75 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    September 6, 2023 50 / 57 The Curse of Dimensionality Handling complexity Involve many variables, how can we handle this complexity without get- ting into trouble. Optimization and Integration Usually Overview September 6, 2023 51 / 57 How to Handle Complexity Properly dealing with complexity is a crucial issue for machine learning. Limiting complexity is one approach Use a model that is complex enough if can find out how to reduce the large number of variables to a small number. Averaging over complexity is the Bayesian approach. Use as complex a model might be needed, but don’t choose a single parameter
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    to the linear computation complexity of RNNs. However, attention is still faster in wall clock time because it processes entire sequences together. The quadratic complexity of attention is addressed through transformer variants with efficient self-attention mechanisms. These ideas tackle the quadratic complexity at various levels. The simplest idea is to chunk the input sequence of length n into blocks of the input sequence, thus compressing it in the process. Sparse attention attempts to reduce the complexity by picking a subset of parameters for attention computation. This subset can also be learned during
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 宋净超 从开源 Istio 到企业级服务:如何在企业中落地服务网格

    cost) ○ Enterprise team structure gap (Workspace, Tenants, etc) ○ UI&UX Background ● Leads to complexity and lack of operational agility ● You can't be Cloud Native at scale without a modern application- Tetrate Academy Warp up • We built products on top of the upstream Istio. • We aim to solve the complexity of Istio and build a zero-trust network for application connectivity. • We are committed to maintaining
    0 码力 | 30 页 | 4.79 MB | 5 月前
    3
  • pdf文档 2.7 Harbor开源项目容器镜像远程复制的实现

    manifest transferring blobs pushing manifest finished has tags No Yes The Complexity of Replication Job •The complexity adds up in these aspects: • Monitoring (logging) • Error handling • Arbitrary
    0 码力 | 37 页 | 3.47 MB | 1 年前
    3
  • pdf文档 可觀測性 (Observability) 在 Kubernetes Day2 Operation的考量與實踐

    style 3 Agenda Day2 Operation Challenge of Kubernetes Day 2 Operation Tame operational complexity Observability Observability Demo 3 Day2 運營 定義與說明 Kubernetes Day2 運營的挑戰 馴服運營 複雜性 可觀測性 K8S Operation Survey @2021/Nov, 1300 受訪者 Click to edit Master title style 11 Tame operational complexity 馴 服 運 營 的 複 雜 性 11 Click to edit Master title style 12 馴服 Kubernetes Day2 Ops 複雜性 12 • A
    0 码力 | 30 页 | 3.01 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    has been a race to create deeper networks with an ever larger number of parameters and increased complexity. In Computer Vision, several model architectures such as VGGNet, Inception, ResNet etc. (refer classification. Each new breakthrough in neural networks has led to an increase in the network complexity, number of parameters, the amount of training resources required to train the network, prediction
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 SUSE Rancher and RKE Kubernetes cluster using CSI Driver on DELL EMC PowerFlex

    software-defined infrastructure platform that is built to reduce operational and infrastructure complexity. PowerFlex empowers organizations to move faster by delivering flexibility, elasticity, and simplicity containers. It works on bare-metal and virtualized servers. RKE solves the problem of installation complexity, a common issue in the Kubernetes community. With RKE, the installation and operation of Kubernetes
    0 码力 | 45 页 | 3.07 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    techniques using the metrics relevant to our use case. In some cases, these techniques can help reduce complexity and improve generalization. Let us consider an arbitrary neural network layer. We can abstract B, C, and D are all matrices. The number of MACs in a model is another metric to measure its complexity. And since they are such a fundamental block of models, they have been optimized both in hardware
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 176 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 18
前往
页
相关搜索词
25原生应用观测实践向阳构建统一数据平台LectureOverviewEfficientDeepLearningBookEDLChapterArchitectures宋净超开源Istio企业企业级服务如何落地网格2.7Harbor项目容器镜像远程复制实现可觀測性ObservabilityKubernetesDay2Operation考量實踐IntroductionSUSERancherandRKEclusterusingCSIDriveronDELLEMCPowerFlexCompressionTechniques
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩