积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部系统运维(3)Prometheus(3)

语言

全部中文(简体)(3)

格式

全部PDF文档 PDF(3)
 
本次搜索耗时 0.011 秒,为您找到相关结果约 3 个.
  • 全部
  • 系统运维
  • Prometheus
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 告警OnCall事件中心建设方法白皮书

    FlashDuty 这种产品存在的价值。这些产品都是以 Duty 命名,核心就是支持告警 OnCall 值班处理的场景。 对于告警事件的后续处理,有哪些问题和需求以及何为最佳实践?我们从思路方法和工具实践两个方面分 别进行探讨,下面先行探讨思路方法,看看要解决这些问题和需求,我们有哪些可能的解法。 思路方法篇 告警事件的后续处理:多渠道分级通知、告警静默、抑制、收敛聚合、降噪、排班、认领升级、协同闭环 除了原则方面,另一个应对过多告警的方法就是靠产品工具了,比如告警事件在哪些时间段发送、如何过 滤、如何屏蔽、如何抑制等等,通常,监控系统和统一的 OnCall 中心( PagerDuty FlashDuty 这种产 品)在这些功能上会有一定的重叠,不过监控系统在这方面做得参差不齐,整体能力偏弱,使用统一的 OnCall 中心功能更强大,我们留待工具实践篇再详细阐述。 接下来我们聊一下 之后要通过某种机制告诉系统:“我已知晓 告警,现在我开始处理了,你不要升级了”。典型的认领功能一般是做在页面上的,告警后打开告警事件 管理中心,选中相关告警一键认领,也可以通过上行短信或即时通讯工具中的上行回调机制来完成。 升级机制会给值班人员很大的压力,毕竟谁也不想稍不留神就把电话打到老板那里,所以一般只有严重的 告警才会启用升级机制,警告或者通知性质的告警都不用启用升级机制。当然,这个规范怎么定,各个团
    0 码力 | 23 页 | 1.75 MB | 1 年前
    3
  • pdf文档 PromQL 从入门到精通

    上面的图是查询的最近一小时的,我们切换到 Table 视图,得到如下结果: 这个表格的内容,是这 5 台机器在当前这个时间点的最新值,当前我做查询的时刻是:2022- 08-25 15:48:03 用 Chrome 开发者工具可以看到发的请求参数: 但是,监控数据是周期性上报的,比如每 10 秒上报一次,在 2022-08-25 15:48:03 这个时 刻,未必恰好有监控数据啊,那这个 Table 中的数据是哪里来的? 一个点,返回的数据的时间间隔取决于 step 参数而非原始数据的上报间隔。 Range Query 理论上是没法绘制 Graph 的(当然有些时序库可能会做容错处理),因为从原 理上说不通。绘图的时候,我们要选择一个时间范围,比如最近一小时,然后传给后端一个 step 参数用于控制分辨率,即数据间隔,比如 step=60,即表示希望每个 series 每分钟返回一 个点,但如果是 Range Quer 文档中有一个章节专门介绍函数,各个函数的介绍中,都会写明是用于 instant- vector,还是用于 range-vector,如果不理解查询类型,就无法很好的应用这些函数。 查询选择器 PromQL大括号里的部分是 selector,查询选择器,用于从一大堆监控数据中,过滤出真正关心 的数据,在 Prometheus 生态里,时序数据的标识,就是一堆标签集合,所以这里的过滤,就 是针对标签做过滤,支持四类操作符:
    0 码力 | 16 页 | 2.77 MB | 1 年前
    3
  • pdf文档 1.6 利用夜莺扩展能力打造全方位监控系统

    美团故障?滴滴故障?腾讯故障? 运维监控需求来源 01.监控的原始需求来自业务稳定性 如何减少服务停摆导致的经济损失?尽快发现故障并止损!故障处理过程中,监控是『发现』和『定位』两个环节 的关键工具。故障处理过程的首要原则是『止损』,因此,过程中的『发现』和『定位』都是面向尽快『止损』来 实现。 监控痛点:全面完备、跨云 第二部分 端上、链路、资源、组件、应用多维度跨云监控,不管哪个 众多企业已上生产,共同打磨夜莺 Server01 Server02 Agentd Agentd LoadBalance 1. 单机版Prom 2. 集群版m3db 3. 集群版n9e-tsdb 3种存储方案,按需选择 Agentd 夜莺设计实现 Agentd 数据采集 第四部分 监控系统的核心功能,是数据采集、存储、分析、展示,完 备性看采集能力,是否能够兼容并包,纳入更多生态的能力, 至关重要 夜莺数据采集
    0 码力 | 40 页 | 3.85 MB | 1 年前
    3
共 3 条
  • 1
前往
页
相关搜索词
告警OnCall事件中心建设方法白皮皮书白皮书PromQLPrometheus1.6利用夜莺扩展能力打造方位全方位监控系统
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩