Hadoop 迁移到阿里云MaxCompute 技术方案
Hadoop 迁移到阿里云 MaxCompute 技术方案 (V2.8.5) 编写人:MaxCompute 产品团队 日 期:2019.05 Alibaba Cloud MaxCompute 解决方案 2 目录 1 概要 .................................. .............. 6 2 阿里云大数据与开源生态对比 .................................................................................................................. 7 2.1 Hadoop 及开源生态与阿里云大数据生态对比 ................ ..................... 8 2.1.3 阿里云大数据组件架构 ......................................................................................................... 9 2.1.4 阿里云大数据与 Hadoop 生态的产品映射 ................0 码力 | 59 页 | 4.33 MB | 1 年前3大数据时代的Intel之Hadoop
大数据时代的Intel乊Hadoop 系统方案架构师:朱海峰 英特尔®中国于计算创新中心 2013.4 北京 法律声明 本文所提供乊信息均不英特尔® 产品相关。本文丌代表英特尔公司戒其它机构向仸何人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销 com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品、计算机系统、日期和数字信息均为依据当前期望得出的初步结果,可随时更改,恕丌另行通知。 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的0 码力 | 36 页 | 2.50 MB | 1 年前3Hadoop 概述
op 允许你 在其数据存储中进行业务分析。这些结果使得组织和公司能够做出 有利于自身的更好商业决策。 为加深理解,让我们勾勒一下大数据的概况。鉴于所涉及数据 的规模,它们会分布于大量存储和计算节点上,而这得益于使用 Hadoop。由于 Hadoop 是分布式的(而非集中式的),因而不具备关系 型数据库管理系统(RDBMS)的特点。这使得你能够使用 Hadoop 所 提供的大型数据存储和多种数据类型。 Hadoop Stack 的其余组件了。HDFS(Hadoop Distributed File System)提供一个分布 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual Hadoop 大数据解决方案 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 最近的发展中,另有一款称为 YARN 的组件已经可 用于进一步管理 Hadoop 生态系统。 1.1.4 YARN 是什么 YARN 基础设施(另一个资源协调器)是一项用于提供执行应用 程序所需的计算资源(内存、CPU 等)的框架。 YARN 有什么诱人的特点或是性质?其中两个重要的部分是资 源管理器和节点管理器。让我们来勾勒 YARN 的框架。首先考虑一 个两层的群集,其中资源管理器在顶层(每个群集中只有一个)。资0 码力 | 17 页 | 583.90 KB | 1 年前3尚硅谷大数据技术之Hadoop(入门)
构。 2)主要解决,海量数据的存储和海量数据的分析计算问题。 3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug –python 人工智能资料下载,可百度访问:尚硅谷官网 1.4 Hadoop 优势(4 高) Hadoop优势(4高) 1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元 素或存储出现故障,也不会导致数据的丢失。 2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。 Hadoop102 Hadoop103 Hadoop104 Hadoop105 4)高容错性:能够自动将失败的任务重新分配。 Hadoop102 Hadoop103 Hadoop104 Hadoop101 单台服务 器工作 计算任务 集群工作 计算子任务 计算子任务 计算任务汇总 Hadoop102 Hadoop103 Hadoop104 计算子任务 计算子任务 计算任务汇总 计算子任务 尚硅谷大数据技术之 Hadoop(入门) ——0 码力 | 35 页 | 1.70 MB | 1 年前3Hadoop 3.0以及未来
• 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 开源贡献、基于Intel平台的开源顷目优化以及一些基于Spark的大 规模机器/深度学习顷目。 • 超过9年的互联网、云计算、大数据的工作经验。 概要 • Hadoop的历叱 • Hadoop 3介绍 Common HDFS YARN MapReduce • Hadoop的未来发展方向 Hadoop的历叱 Hadoop 1.0发布 Hadoop 2.0 GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common JDK Hadoop 3介绍 • Common • HDFS 纠错码(Erasure Coding) 多个Standby Namenode Datanode内部balance工具 云计算平台的支持 • YARN • MapReduce HDFS纠错码(Erasure Coding) • 一个简单的例子 1备份: 1,0 需要额外的2位 XOR编码: 1,0 需要额外的1位0 码力 | 33 页 | 841.56 KB | 1 年前3尚硅谷大数据技术之Hadoop(生产调优手册)
Hadoop(生产调优手 册) (作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 namenode.handler.count=20 × ??????????? ????,比如集群规模(DataNode 台 数)为 3 台时,此参数设置为 21。可通过简单的 python 代码计算该值,代码如下。 [atguigu@hadoop102 ~]$ sudo yum install -y python [atguigu@hadoop102 ~]$ python Python ➢ Throughput mb/sec:单个 mapTak 的吞吐量 计算方式:处理的总文件大小/每一个 mapTask 写数据的时间累加 集群整体吞吐量:生成 mapTask 数量*单个 mapTak 的吞吐量 ➢ Average IO rate mb/sec::平均 mapTak 的吞吐量 计算方式:每个 mapTask 处理文件大小/每一个 mapTask 写数据的时间0 码力 | 41 页 | 2.32 MB | 1 年前3银河麒麟服务器操作系统V4 Hadoop 软件适配手册
................................. 7 3 格式化并启动集群 ................................................................................................ 7 3.1 格式化 NAMENODE ................................. 力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 的框架最核心的设计就是:HDFS 和 MapReduce。HDFS 为海量的数 据提供了存储,而 MapReduce 则为海量的数据提供了计算。 1.4 HDFS 架构原理 HDFS 是 Hadoop 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。0 码力 | 8 页 | 313.35 KB | 1 年前3這些年,我們一起追的Hadoop
這些年,我們一起追的 Hadoop Hadoop, the Apple of Our Eyes 蘇國鈞 monster.supreme@gmail.com 資訊工業策進會 數位教育研究所 資訊技術訓練中心 1 / 74 在 Java SE 與 Java EE 領域有十多 年的講師教學經驗,熟悉 SOAP/RESTful Services、Design Patterns、EJB/JPA 等 Java Scheduling / Monitoring) 比較沒人知道的事: Hadoop 2.x 也默默地做了四五年了 ... 雖然是大修,但是 Backward Compatibility 做的很棒 Yahoo! 去年就已經把 Hadoop 2.x 部署在 35,000+ Node 跑了六 個月以上 ... 21 / 74 1. Submit Job 2. 建構特定 AM 3. 向 RM 註冊 AM 4. 送 Microsoft HDInsight MapR 有 MapR Distribution for Apache Hadoop (M3, M5, M7) ... 喜歡 Make (自造者運動) 的人還是可以去 Apache BigTop 網站自行下載組裝。 40 / 74 Cloudera Distribution for Hadoop 2014 年獲得 900M 的資金挹注,其中 740M 來自 Intel。0 码力 | 74 页 | 45.76 MB | 1 年前3MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: ▪ Volumes - 数据规模,数据规模巨大 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 展 ▪ Variety - 数据种类 ,数据种类繁多 结构化数据,半结构化数据,非结构化数据 ▪ Value - 数据价值,数据价值密度低 价值密度的高低与数据总量的大小成反比 ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; ▪ 数据处理与分析所需时间增长 – 数据规模增大、数据复杂度增加,增加处理难度和所需时间; 5 MATLAB的大数据处理 ▪ 编程 ▪ Streaming ▪ Block Processing0 码力 | 17 页 | 1.64 MB | 1 年前3Spark 简介以及与 Hadoop 的对比
Spark 简介 1.1 Spark 概述 Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用的并行计算框 架,Spark 基于 map reduce 算法实现的分布式计算,拥有 Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 中间输出和结果可以保存在内存中,从而不再需要读 写 HDFS,因此 实现。RDD 必须是可序 列化的。RDD 可以 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 内存中,下一个操作可以直接从内存中输入,省去了 MapReduce 大量的磁盘 IO 操作。这对 于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。 1.2.2 RDD 的转换与操作 对于 RDD 可以有两种计算方式:转换(返回值还是一个 RDD)与操作(返回值不是一个 操作时只会记录需要这样的操作,并不会去执行,需要等到有 Actions 操作的时候才会真正启动计算过程进行计算。 2. 操作(Actions) (如:count, collect, save 等),Actions 操作会返回结果或把 RDD 数据写 到存储系统中。Actions 是触发 Spark 启动计算的动因。 1.2.3 血统(Lineage) 利用内存加快数据加载,在众多的其它的0 码力 | 3 页 | 172.14 KB | 1 年前3
共 12 条
- 1
- 2