大数据集成与Hadoop - IBM
单处理器 SMP系统 MPP群集系统或GRID 4 路并行 64 路并行 CPU CPU CPU CPU CPU 内存 共享内存 磁盘 磁盘 关键成功因素:大数据集成平台必须支持全部三个维度的可 扩展性 • 线性数据可扩展性:硬件和软件系统通过线性增加硬件 资源来线性提高处理吞吐量。例如,如果在50个处理器 上运行4小时可以处理200GB数据,在100个处理器上运 行4小时可 并实现应用程序横向扩展以执行大数据集成,但这种说法显 然不真实。 没有非共享、大规模可扩展ETL引擎(如InfoSphere DataStage),企业势必会遇到功能和性能限制。越来越 多的企业意识到,不可扩展的ETL工具与MapReduce pushdown之争无法在Hadoop中提供所需的性能水平。 因此他们争相与IBM合作解决这个问题,因为IBM大数据集 成解决方案以其独有的方式支持大数据集成的大规模数据可 • 用户不得不通过繁复的手动编码在Hadoop中运行较为 复杂的数据集成逻辑,或者限制流程在MapReduce中 运行相对简单的转换。 • MapReduce在处理大型数据集成工作负载方面具有多 种已知的性能限制,因为其目的在于牺牲高性能处理来 支持细粒度容错。 最佳实践4:在企业间实施世界级数据治理 绝大部分大型企业发现,在企业中建立数据治理机制即便是 可行的,也会十分困难。造成这种局面的原因很多。例如,企0 码力 | 16 页 | 1.23 MB | 1 年前3這些年,我們一起追的Hadoop
EE 領域有十多 年的講師教學經驗,熟悉 SOAP/RESTful Services、Design Patterns、EJB/JPA 等 Java EE 規 格,Struts/Spring/Hibernate 等 Open Source Framework,與 JBoss AS、 GlassFish 等 Application Server。 自認為會的技術不多,但是學不會的 也不多,最擅長把老闆交代的工作, Task 給 TT 3. TT 執行 Task 4. TT 向 JT 回報 Hadoop 1.x 架構 - MapReduce (MRv1) 只有一個 JobTracker (Master),可是要管理多個 TaskTracker (Slave)! 10 / 74 Hadoop 1.x 架構與限制 比較基本的模組: Hadoop HDFS (Storage) Hadoop MapReduce (Computing Namespace,沒辦法分開管控 /sales、/accounting、... 只能執行 MapReduce Job ... 弱弱的問一下:台灣有多少企業 Cluster 有這麼大?Task 有這麼 多? 11 / 74 我們對 Hadoop 的期許: Batch Job Interactive Query Real-Time Processing Graph Processing Iterative0 码力 | 74 页 | 45.76 MB | 1 年前3尚硅谷大数据技术之Hadoop(生产调优手册)
3)测试结果分析:为什么读取文件速度大于网络带宽?由于目前只有三台服务器,且有三 个副本,数据读取就近原则,相当于都是读取的本地磁盘数据,没有走网络。 第 3 章 HDFS—多目录 3.1 NameNode 多目录配置 1)NameNode 的本地目录可以配置成多个,且每个目录存放内容相同,增加了可靠性 2)具体配置如下 (1)在 hdfs-site.xml 文件中添加如下内容 drwxrwxr-x. 3 atguigu atguigu 4096 12 月 11 08:03 name2 检查 name1 和 name2 里面的内容,发现一模一样。 3.2 DataNode 多目录配置 1)DataNode 可以配置成多个目录,每个目录存储的数据不一样(数据不是副本) 2)具体配置如下 在 hdfs-site.xml 文件中添加如下内容3]$ hadoop fs -put /opt/module/hadoop-3.1.3/LICENSE.txt / 思考:如果数据不均衡(hadoop105 数据少,其他节点数据多),怎么处理? 4.3 服务器间数据均衡 1)企业经验: 在企业开发中,如果经常在 hadoop102 和 hadoop104 上提交任务,且副本数为 2,由于 0 码力 | 41 页 | 2.32 MB | 1 年前3Hadoop 迁移到阿里云MaxCompute 技术方案
MaxCompute 解决方案 11 2.2.1 MaxComptue 的逻辑架构 2.2.2 MaxCompute 产品特性 MaxCompute 提供了云原生、多租户的服务架构,在底层大规模计算、存储资源之上预先构建 好了 MaxCompute 计算服务、服务接口,提供了配套的安全管控手段和开发工具管理工具,产 品开箱即用。 功能 MaxCompute MaxCompute 支持大规模计算存储,适用于 TB 以上规 模的存储及计算需求,最大可达 EB 级别。同一个 MaxCompute 项目支持企业从创业团队发展到独角兽的 数据规模需求; 数据分布式存储,多副本冗余,数据存储对外仅开放表的 操作接口,不提供文件系统访问接口 自研数据存储结构,表数据列式存储,默认高度压缩,后 D k n e P y l w s o u ) ( ( f I w MaxCompute 提供的兼容开源的 Spark 计算 服务,让它在统一的计算资源和数据集权限体系之上,提 供 Spark 计算框架,支持用户以熟悉的开发使用方式提 交运行 Spark 作业。 * 支持原生多版本 Spark 作业:Spark1.x/Spark2.x 作业 都可运行; * 开源系统的使用体验:Spark-submit 提交方式(暂不 支持 spark-shell/spark-sql0 码力 | 59 页 | 4.33 MB | 1 年前3Hadoop 3.0以及未来
对象存储 - HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等 • Erasure Coding的完善 YARN的未来 • 更大规模的集群支持 • 更好的资源调度,隔离和多租户 • 支持更多的应用,包括long running的service 谢谢 Q&A0 码力 | 33 页 | 841.56 KB | 1 年前3Hadoop 概述
型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 总会遇到一台或者多台无法正常工作的风险。HDFS 具备检测故障 和快速执行自动恢复的功能。 HDFS 的设计针对批处理做了优化,它提供高吞吐量的数据访 问,而非低延迟的数据访问。运行在0 码力 | 17 页 | 583.90 KB | 1 年前3
共 6 条
- 1