积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Hadoop(13)

语言

全部中文(简体)(11)西班牙语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    简介以及与 Hadoop 的对比 1 Spark 简介 1.1 Spark 概述 Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用的并行计算框 架,Spark 基于 map reduce 算法实现的分布式计算,拥有 Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 中间输出和结果可以保存在内存中,从而不再需要读 能更好地适用于数据挖掘与机器学习等需要迭代的 map reduce 的算 法。 1.2 Spark 核心概念 1.2.1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 来操作分布式数据集的抽象实现。RDD 是 Spark 最核心的东西,它表示已被分区,不可变的 并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现。RDD 实现。RDD 必须是可序 列化的。RDD 可以 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 内存中,下一个操作可以直接从内存中输入,省去了 MapReduce 大量的磁盘 IO 操作。这对 于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。 1.2.2 RDD 的转换与操作 对于 RDD 可以有两种计算方式:转换(返回值还是一个 RDD)与操作(返回值不是一个
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    大数据时代的Intel乊Hadoop 系统方案架构师:朱海峰 英特尔®中国于计算创新中心 2013.4 北京 法律声明 本文所提供乊信息均不英特尔® 产品相关。本文丌代表英特尔公司戒其它机构向仸何人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销 利、版权戒其它知识产权的担保。 “关键业务应用”是挃当英特尔® 产品发生故障时,可能会直接戒间接地造成人员伤害戒死亡的应用。如果您针对此类关键业务应用购买戒使用英特尔产品,您应当对英特尔迚行赔偿,保 证因使用此类关键业务应用而造成的产品责仸、人员伤害戒死亡索赔中直接戒间接发生的所有索赔成本、损坏、费用以及合理的律师费丌会对英特尔及其子公司、分包商和分支机构,以及 相关的董事、管理人员和员工造成 相关的董事、管理人员和员工造成损害,无论英特尔及其分包商在英特尔产品戒其仸何部件的设计、制造戒警示环节是否出现疏忽大意的情冴。 英特尔可以随时在丌发布声明的情冴下修改规格和产品说明。设计者丌应信赖仸何英特产品所丌具有的特性,设计者亦丌应信赖仸何标有保留权利摂戒未定义摂说明戒特性描述。英特尔保 留今后对其定义的权利,对亍因今后对其迚行修改所产生的冲突戒丌兼容性概丌负责。此处提供的信息可随时改变而毋需通知。请勿使用本信息来对某个设计做出最终决定。
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 這些年,我們一起追的Hadoop

    這些年,我們一起追的 Hadoop Hadoop, the Apple of Our Eyes 蘇國鈞 monster.supreme@gmail.com 資訊工業策進會 數位教育研究所 資訊技術訓練中心 1 / 74 在 Java SE 與 Java EE 領域有十多 年的講師教學經驗,熟悉 SOAP/RESTful Services、Design Patterns、EJB/JPA Server。 自認為會的技術不多,但是學不會的 也不多,最擅長把老闆交代的工作, 以及找不到老師教的技術,想辦法變 成自己的專長。 目前負責 Java 與 .NET 雲端運算相 關技術的推廣,主要包括 Hadoop Platform 與 NoSQL 等 Big Data 相關 應用,Google App Engine、Microsoft Azure 與 CloudBees 等雲端平台的運 用,以及 Android、Windows Android、Windows Phone 等 Smart Phone 的應用程式開發。 PS. 除了我的照片之外,投影片裡頭 所有的圖片都來自於 Google Search,版權歸原來各網站與企業所 有,謝謝。 Bio 2 / 74 Agenda 0. 前情提要 1. 進擊的 Hadoop 2. Hadoop 家族 3. Hadoop 戰隊 4. Hadoop 富二代 5. Hadoop
    0 码力 | 74 页 | 45.76 MB | 1 年前
    3
  • pdf文档 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖

    现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 ▪ Variety - 数据种类 ,数据种类繁多 结构化数据,半结构化数据,非结构化数据 ▪ Value - 数据价值,数据价值密度低 价值密度的高低与数据总量的大小成反比 ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; ▪ 数据处理与分析所需时间增长 – 数据规模增大、数据复杂度增加,增加处理难度和所需时间; 5 MATLAB的大数据处理 ▪ 编程 ▪ Streaming
    0 码力 | 17 页 | 1.64 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    本章内容提要 ● Hadoop 的组件 ● HDFS、MapReduce、YARN、ZooKeeper 和 Hive 的角色 ● Hadoop 与其他系统的集成 ● 数据集成与 Hadoop Hadoop 是一种用于管理大数据的基本工具。这种工具满足了企 业在大型数据库(在 Hadoop 中亦称为数据湖)管理方面日益增长的 需求。当涉及数据时,企业中最大的需求便是可扩展能力。科技和 和 商业促使各种组织收集越来越多的数据,而这也增加了高效管理这 些数据的需求。本章探讨 Hadoop Stack,以及所有可与 Hadoop 一 起使用的相关组件。 在构建 Hadoop Stack 的过程中,每个组件都在平台中扮演着重 要角色。软件栈始于 Hadoop Common 中所包含的基础组件。Hadoop 1 第 章 Hadoop 大数据解决方案 Common 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过 本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。”
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    ...................................................................... 9 2.1.4 阿里云大数据与 Hadoop 生态的产品映射 ......................................................................... 9 2.2 MaxCompute 特性介绍 ........................................................................... 10 2.2.1 MaxComptue 的逻辑架构 ............................................................................................... .......................... 15 3.1 迁移基于 Hadoop 的数据湖/数据仓库业务负载 ......................................................................... 15 3.2 不同的网络环境及部署形态迁移 ......................................
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    HADOOP_NAMENODE_OPTS=-Xmx3072m 3)Hadoop3.x 系列,配置 NameNode 内存 (1)hadoop-env.sh 中描述 Hadoop 的内存是动态分配的 # The maximum amount of heap to use (Java -Xmx). If no unit # is provided, it will be converted Configuration: MaxHeapSize = 1031798784 (984.0MB) 查看发现 hadoop102 上的 NameNode 和 DataNode 占用内存都是自动分配的,且相等。 不是很合理。 经验参考: https://docs.cloudera.com/documentation/enterprise/6/release- server threads listen to requests from all nodes. NameNode 有一个工作线程池,用来处理不同 DataNode 的并发心跳以及客户端并发 的元数据操作。 对于大集群或者有大量客户端的集群来说,通常需要增大该参数。默认值是 10。 dfs.namenode.handler.count
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    1 章 Hadoop 概述 1.1 Hadoop 是什么 Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 2)主要解决,海量数据的存储和海量数据的分析计算问题。 3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) GFS --->HDFS Map-Reduce Hadoop发展历史 6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用 了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。 7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。 8)2006 年 3 月份,Map-Reduce和Nutch Distributed
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    系统概述 银河麒麟服务器操作系统主要面向军队综合电子信息系统、金融系统以及电 力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 可控服务器操作系统。 1.2 环境概述 服务器型号 长城信安擎天 DF720 服务器 CPU 类型 飞腾 2000+处理器 操作系统版本 Kylin-4.0.2-server-sp2-2000-19050910.Z1 内核版本 4.4.131 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构。用户可以在 不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高 速运算和存储。 Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称 HDFS。HDFS 有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件 上;而且它提供高吞吐量(high
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
Spark简介以及Hadoop对比大数时代Intel這些我們一起MATLAB集成实现数据处理价值概述IBM迁移阿里MaxCompute技术方案硅谷生产调优手册入门银河麒麟服务务器服务器操作系统操作系统V4软件适配
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩