积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(6)机器学习(6)

语言

全部英语(3)中文(简体)(3)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.051 秒,为您找到相关结果约 6 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    also choose bge-large or bge-small as the embedding model or modify the context window size or text chunk size depending on your computing resources. Qwen 1.5 model families support a maximum of 32K context model_name = "BAAI/bge-base-en-v1.5" ) # Set the size of the text chunk for retrieval Settings.transformations = [SentenceSplitter(chunk_size=1024)] 1.15.3 现在,我们可以设置语言模型和向量模型。Qwen1.5-Chat 支持包括英语和中文 在内的多种语言对话。您可以使用 lists.append(ls1) ls1 = [ls[i]] lists.append(ls1) return lists class FAISSWrapper(FAISS): chunk_size = 250 chunk_conent = True score_threshold = 0 def similarity_search_with_score_by_vector( self, embedding:
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 11. 合并与分割

    主讲人:龙良曲 Merge or split https://blog.openai.com/generative-models/ ▪ Cat ▪ Stack ▪ Split ▪ Chunk cat ▪ Statistics about scores ▪ [class1-4, students, scores] ▪ [class5-9, students, scores] Along Along distinct dim/axis ▪ Dim=d for example stack create new dim Cat v.s. stack Split: by len Chunk: by num Thank You.
    0 码力 | 10 页 | 974.80 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    函数可以实现张量分割外,PyTorch 还提供了另一个函数 torch.chunk。他的 用法与 torch.split 非常类似,区别在于 chunk 函数的参数 chunks 指定了切割份数,而 split 函数的参数 split_size_or_sections 则是每份长度,本质上两个函数是等价的。例如,将总成 绩册张量在班级维度进行 chunk 操作,等分为 2 份,代码如下: In [11]: randn([10,35,8]) a,b = torch.chunk(x, chunks=2, dim=0) # 等分为 2 份 a.shape, b.shape Out[11]: (torch.Size([5, 35, 8]), torch.Size([5, 35, 8])) 将总成绩册张量在班级维度进行 chunk 操作,等分为 10 份,代码如下: In [12]: torch.randn([10,35,8]) result = torch.chunk(x, chunks=10, dim=0) # 等分为 10 份 len(result), result[0].shape Out[12]: (10, torch.Size([1, 35, 8])) 可以看到,torch.chunk 函数完成的功能与 torch.split 完全一样。 此外,torch
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    reward) self.optimizer.apply_gradients( zip(grads, controller.rnn.trainable_variables) ) The next chunk of code puts everything together and runs the search for 150 episodes. controller = Controller()
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    mechanisms. These ideas tackle the quadratic complexity at various levels. The simplest idea is to chunk the input sequence of length n into blocks of length b where b <<< n. The resulting score matrices
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    its iteration has been fixed. ‣ Fusion: Tensor and constant scalar operations, like add(t, 1), and chunk operations are now fusable. ‣ Performance improvements: dropout, 1x1 convolutions for NCHW, and weightnorm
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 6 条
  • 1
前往
页
相关搜索词
AI模型千问qwen中文文档深度学习PyTorch入门实战11合并分割深度学习EfficientDeepLearningBookEDLChapterAutomationArchitecturesReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩