AI大模型千问 qwen 中文文档
also choose bge-large or bge-small as the embedding model or modify the context window size or text chunk size depending on your computing resources. Qwen 1.5 model families support a maximum of 32K context model_name = "BAAI/bge-base-en-v1.5" ) # Set the size of the text chunk for retrieval Settings.transformations = [SentenceSplitter(chunk_size=1024)] 1.15.3 现在,我们可以设置语言模型和向量模型。Qwen1.5-Chat 支持包括英语和中文 在内的多种语言对话。您可以使用 lists.append(ls1) ls1 = [ls[i]] lists.append(ls1) return lists class FAISSWrapper(FAISS): chunk_size = 250 chunk_conent = True score_threshold = 0 def similarity_search_with_score_by_vector( self, embedding:0 码力 | 56 页 | 835.78 KB | 1 年前3深度学习与PyTorch入门实战 - 11. 合并与分割
主讲人:龙良曲 Merge or split https://blog.openai.com/generative-models/ ▪ Cat ▪ Stack ▪ Split ▪ Chunk cat ▪ Statistics about scores ▪ [class1-4, students, scores] ▪ [class5-9, students, scores] Along Along distinct dim/axis ▪ Dim=d for example stack create new dim Cat v.s. stack Split: by len Chunk: by num Thank You.0 码力 | 10 页 | 974.80 KB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
函数可以实现张量分割外,PyTorch 还提供了另一个函数 torch.chunk。他的 用法与 torch.split 非常类似,区别在于 chunk 函数的参数 chunks 指定了切割份数,而 split 函数的参数 split_size_or_sections 则是每份长度,本质上两个函数是等价的。例如,将总成 绩册张量在班级维度进行 chunk 操作,等分为 2 份,代码如下: In [11]: randn([10,35,8]) a,b = torch.chunk(x, chunks=2, dim=0) # 等分为 2 份 a.shape, b.shape Out[11]: (torch.Size([5, 35, 8]), torch.Size([5, 35, 8])) 将总成绩册张量在班级维度进行 chunk 操作,等分为 10 份,代码如下: In [12]: torch.randn([10,35,8]) result = torch.chunk(x, chunks=10, dim=0) # 等分为 10 份 len(result), result[0].shape Out[12]: (10, torch.Size([1, 35, 8])) 可以看到,torch.chunk 函数完成的功能与 torch.split 完全一样。 此外,torch0 码力 | 439 页 | 29.91 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation
reward) self.optimizer.apply_gradients( zip(grads, controller.rnn.trainable_variables) ) The next chunk of code puts everything together and runs the search for 150 episodes. controller = Controller()0 码力 | 33 页 | 2.48 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
mechanisms. These ideas tackle the quadratic complexity at various levels. The simplest idea is to chunk the input sequence of length n into blocks of length b where b <<< n. The resulting score matrices0 码力 | 53 页 | 3.92 MB | 1 年前3PyTorch Release Notes
its iteration has been fixed. ‣ Fusion: Tensor and constant scalar operations, like add(t, 1), and chunk operations are now fusable. ‣ Performance improvements: dropout, 1x1 convolutions for NCHW, and weightnorm0 码力 | 365 页 | 2.94 MB | 1 年前3
共 6 条
- 1