机器学习课程-温州大学-特征工程
文本方面的词袋模型、词嵌入模型等 3. 特征提取 18 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 1.PCA(Principal Component Analysis,主成分分析) PCA 是降维最经典的方法,它旨在是找到数据中的主成分,并利 用这些主成分来表征原始数据,从而达到降维的目的。 PCA 的思想是通过坐标轴转换,寻找数据分布的最优子空间。 的样本降低到? 维 步骤 3. 特征提取 降维 19 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 2. ICA(Independent Component Analysis,独立成分分析) ICA独立成分分析,获得的是相互独立的属性。ICA算法本质寻找一 个线性变换 ? = ??,使得 ? 的各个特征分量之间的独立性最大。 PCA 对数据0 码力 | 38 页 | 1.28 MB | 1 年前3机器学习课程-温州大学-11机器学习-降维
30 3.PCA(主成分分析) 01 降维概述 02 SVD(奇异值分解) 03 PCA(主成分分析) 31 3.PCA(主成分分析) 主成分分析(Principal Component Analysis,PCA)是一种降维方法, 通过将一个大的特征集转换成一个较小的特征集,这个特征集仍然包含 了原始数据中的大部分信息,从而降低了原始数据的维数。 减少一个数据集的特征数 Dimensionality of Data with Neural Networks.[J]. Science, 2006. [3] Jolliffe I T . Principal Component Analysis[J]. Journal of Marketing Research, 2002, 87(4):513. [4] 李航. 统计学习方法[M]. 北京: 清华大学出版社,20190 码力 | 51 页 | 3.14 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
4-15. The encoder RNN transforms the english sequence to a latent representation . The decoder component receives and outputs spanish language sequence . Figure 4-15: RNN Encoder-Decoder This basic idea are grouped under the Sparse group. After input sequence and the attention parameters, the next component to attack is the softmax computation. The Low Rank methods project the keys and the values to a0 码力 | 53 页 | 3.92 MB | 1 年前3Lecture 2: Linear Regression
Linear Regression September 13, 2023 16 / 31 GD Algorithm (Contd.) In more details, we update each component of θ according to the fol- lowing rule θj ← θj − α∂J(θ) ∂θj , ∀j = 0, 1, · · · , n Calculating0 码力 | 31 页 | 608.38 KB | 1 年前3Lecture 1: Overview
replace these with fewer ones, without loss of information. On simple way is to use PCA (Principal Component Analysis) Suppose that all data are in a space, we first find the direction of high- est variance0 码力 | 57 页 | 2.41 MB | 1 年前3Lecture 6: Support Vector Machine
the unsupervised learning algorithms too can be kernelized (e.g., K-means clustering, Principal Component Analysis, etc.) Feng Li (SDU) SVM December 28, 2021 53 / 82 Kernelized SVM Training SVM dual0 码力 | 82 页 | 773.97 KB | 1 年前3Lecture Notes on Support Vector Machine
regression, etc. Many of the unsupervised learning algorithms (e.g., K-means clustering, Principal Component Analysis, etc.) can be kernelized too. Recall that, the dual problem of SVM can be formulated as0 码力 | 18 页 | 509.37 KB | 1 年前3Lecture Notes on Gaussian Discriminant Analysis, Naive
training data are denoted by {x(i), y(i)}i=1,··· ,m, where x(i) is a n-dimensional vector with each component x(i) j ∈ {0, 1} (j = 1, · · · , n), and y(i) ∈ {1, · · · , k}. For brevity, we use [k] to denote0 码力 | 19 页 | 238.80 KB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation
architectures for scalable image recognition. The output of a cell is the concatenated output of all the component blocks. The inputs to the cell are the outputs of the last two cells. The blocks are predicted0 码力 | 33 页 | 2.48 MB | 1 年前3动手学深度学习 v2.0
如,给定一组照片,我们 能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗?同样,给定一组用户的网页浏览记录,我们能 否将具有相似行为的用户聚类呢? • 主成分分析(principal component analysis)问题:我们能否找到少量的参数来准确地捕捉数据的线 性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发 出了一小部分参数,这些参数 ), tensor(6.), tensor(1.5000), tensor(9.)) 2.3.2 向量 向量可以被视为标量值组成的列表。这些标量值被称为向量的元素(element)或分量(component)。当向 量表示数据集中的样本时,它们的值具有一定的现实意义。例如,如果我们正在训练一个模型来预测贷款违 约风险,可能会将每个申请人与一个向量相关联,其分量与其收入、工作年限、过往违约次数和其他因素相 使人类的大脑能够更明智地分配资源来生存、成长和社交,例如发现天敌、找寻食物和伴侣。 10.1.1 生物学中的注意力提示 注意力是如何应用于视觉世界中的呢?这要从当今十分普及的双组件(two‐component)的框架开始讲起: 这个框架的出现可以追溯到19世纪90年代的威廉·詹姆斯,他被认为是“美国心理学之父”(James, 2007)。在 这个框架中,受试者基于非自主性提示和自主性提示有选择地引导注意力的焦点。0 码力 | 797 页 | 29.45 MB | 1 年前3
共 10 条
- 1