keras tutorial
..................................................................... 7 3. Keras ― Backend Configuration ............................................................................................. using the below command: pip install TensorFlow Once we execute keras, we could see the configuration file is located at your home directory inside and go to .keras/keras.json. keras.json { or float64 using set_floatx() method. backend denotes the current backend. Suppose, if the file is not created then move to the location and create using the below steps: > cd home > mkdir0 码力 | 98 页 | 1.57 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques
The tflite_model_eval() function starts by creating a tflite interpreter, which consumes the model file content. The model_content variable holds the contents of the model that we created earlier. Then generates a tflite model file content string. We referred to this string as model_content earlier. The converter object also supports weight and activation quantizations using configuration parameters. We are0 码力 | 33 页 | 1.96 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation
errors. This approach is also called Configuration Selection because we are aiming to find optimal hyperparameter values. BOS is likely to reach the optimum configuration faster than Grid and Random searches configurations and adaptively allocates more resources to the promising ones. This is called Configuration Evaluation. Let's discuss it in detail in the next section. Figure 7-3: (a) Bayesian Optimization errors. (b) This plot shows the validation error as a function of resources allocated to each configuration. Promising configurations get more resources. Source: Hyperband2 2 Li, Lisha, et al. "Hyperband:0 码力 | 33 页 | 2.48 MB | 1 年前3PyTorch Release Notes
features and enhancements. ‣ PyTorch container image version 23.04 is based on 2.1.0a0+fe05266f. ‣ Configuration of NCCL communicators via: https://github.com/pytorch/pytorch/ pull/97394 Announcements ‣ Transformer library ™ (cuBLAS) 9.0.282 Patch 2 which is installed by default ‣ cuBLAS 9.0.234 Patch 1 as a debian file. Installing Patch 1 by issuing the dpkg - i /opt/cuda-cublas-9-0_9.0.234-1_amd64.deb command is the0 码力 | 365 页 | 2.94 MB | 1 年前3机器学习课程-温州大学-08深度学习-深度卷积神经网络
Max-Pool Conv3-32 Conv3-128 Conv3-64 Conv3-64 Max-Pool Max-Pool FC-512 Output ConvNet Configuration Stacked layers Previous input x F(x) y=F(x) Stacked layers Previous input x F(x) y=F(x)+x0 码力 | 32 页 | 2.42 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques
SavedModel format. import tempfile _, keras_file = tempfile.mkstemp('.h5') print('Saving model to: ', keras_file) tf.keras.models.save_model(model_wm_10, keras_file, include_optimizer=False) Saving model el) _, clustered_keras_file = tempfile.mkstemp('.h5') print('Saving clustered model to: ', clustered_keras_file) tf.keras.models.save_model(final_model, clustered_keras_file, include_optimizer=False) clustered_tflite_file = '/tmp/clustered_speech.tflite' converter = tf.lite.TFLiteConverter.from_keras_model(final_model) tflite_clustered_model = converter.convert() with open(clustered_tflite_file, 'wb') as0 码力 | 34 页 | 3.18 MB | 1 年前3QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野
media/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:Movin nd_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons L.P. All rights reserved. Computer Vision Tasks Modified from https://commons.wikimedia.org/wiki/File:Cats_Petunia_and_Mimosa_2004.jpg May be re-distributed in accordance with the terms of the CC-SA 40 码力 | 64 页 | 13.45 MB | 1 年前3AI大模型千问 qwen 中文文档
huggingface-cli(首先需要通过命令 pip install huggingface_hub 安装它): huggingface-cli downloadfile> --local-dir --local-dir- �→use-symlinks False 比如: huggingface-cli download Qwen/Qwen1 slightly bad static_groups=False, sym=True, true_sequential=True, model_name_or_path=None, model_file_base_name="model" ) max_len = 8192 # Load your tokenizer and model with AutoGPTQ # To learn about modules for LoRA. By default we tune all linear layers; • lora_weight_path: the path to the weight file for LoRA; • lora_bias: the bias for LoRA; • q_lora: whether to use Q-LoRA. def maybe_zero_3(param): 0 码力 | 56 页 | 835.78 KB | 1 年前3Keras: 基于 Python 的深度学习库
normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 20.6 get_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 20.7 print_summary io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix 文档。 你也可以直接使用 HDF5 数据集: import h5py with h5py.File('input/file.hdf5', 'r') as f: x_data = f['x_data'] model.predict(x_data) 快速开始 36 3.3.19 Keras 配置文件保存在哪里? 用于防止在某些操作中被零除的 epsilon 模糊因子。 • 默认浮点数据类型。 • 默认后端。详见 backend 文档。 同 样, 缓 存 的 数 据 集 文 件 (如 使 用 get_file() 下 载 的 文 件) 默 认 存 储 在 $HOME/.keras/datasets/ 中。 3.3.20 如何在 Keras 开发过程中获取可复现的结果? 在模型的开发过程中,能够在0 码力 | 257 页 | 1.19 MB | 1 年前3Machine Learning Pytorch Tutorial
Prerequisites ● We assume you are already familiar with… 1. Python3 ■ if-else, loop, function, file IO, class, ... ■ refs: link1, link2, link3 2. Deep Learning Basics ■ Prof. Lee’s 1st & 2nd lecture expected values ● Dataloader: groups data in batches, enables multiprocessing ● dataset = MyDataset(file) ● dataloader = DataLoader(dataset, batch_size, shuffle=True) More info about batches and shuffling from torch.utils.data import Dataset, DataLoader class MyDataset(Dataset): def __init__(self, file): self.data = ... def __getitem__(self, index): return self.data[index] def0 码力 | 48 页 | 584.86 KB | 1 年前3
共 21 条
- 1
- 2
- 3