积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)机器学习(21)

语言

全部英语(11)中文(简体)(10)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.060 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    ..................................................................... 7 3. Keras ― Backend Configuration ............................................................................................. using the below command: pip install TensorFlow Once we execute keras, we could see the configuration file is located at your home directory inside and go to .keras/keras.json. keras.json { or float64 using set_floatx() method.  backend denotes the current backend. Suppose, if the file is not created then move to the location and create using the below steps: > cd home > mkdir
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    The tflite_model_eval() function starts by creating a tflite interpreter, which consumes the model file content. The model_content variable holds the contents of the model that we created earlier. Then generates a tflite model file content string. We referred to this string as model_content earlier. The converter object also supports weight and activation quantizations using configuration parameters. We are
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    errors. This approach is also called Configuration Selection because we are aiming to find optimal hyperparameter values. BOS is likely to reach the optimum configuration faster than Grid and Random searches configurations and adaptively allocates more resources to the promising ones. This is called Configuration Evaluation. Let's discuss it in detail in the next section. Figure 7-3: (a) Bayesian Optimization errors. (b) This plot shows the validation error as a function of resources allocated to each configuration. Promising configurations get more resources. Source: Hyperband2 2 Li, Lisha, et al. "Hyperband:
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    features and enhancements. ‣ PyTorch container image version 23.04 is based on 2.1.0a0+fe05266f. ‣ Configuration of NCCL communicators via: https://github.com/pytorch/pytorch/ pull/97394 Announcements ‣ Transformer library ™ (cuBLAS) 9.0.282 Patch 2 which is installed by default ‣ cuBLAS 9.0.234 Patch 1 as a debian file. Installing Patch 1 by issuing the dpkg - i /opt/cuda-cublas-9-0_9.0.234-1_amd64.deb command is the
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08深度学习-深度卷积神经网络

    Max-Pool Conv3-32 Conv3-128 Conv3-64 Conv3-64 Max-Pool Max-Pool FC-512 Output ConvNet Configuration Stacked layers Previous input x F(x) y=F(x) Stacked layers Previous input x F(x) y=F(x)+x
    0 码力 | 32 页 | 2.42 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    SavedModel format. import tempfile _, keras_file = tempfile.mkstemp('.h5') print('Saving model to: ', keras_file) tf.keras.models.save_model(model_wm_10, keras_file, include_optimizer=False) Saving model el) _, clustered_keras_file = tempfile.mkstemp('.h5') print('Saving clustered model to: ', clustered_keras_file) tf.keras.models.save_model(final_model, clustered_keras_file, include_optimizer=False) clustered_tflite_file = '/tmp/clustered_speech.tflite' converter = tf.lite.TFLiteConverter.from_keras_model(final_model) tflite_clustered_model = converter.convert() with open(clustered_tflite_file, 'wb') as
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    media/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:Movin nd_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons L.P. All rights reserved. Computer Vision Tasks Modified from https://commons.wikimedia.org/wiki/File:Cats_Petunia_and_Mimosa_2004.jpg May be re-distributed in accordance with the terms of the CC-SA 4
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    huggingface-cli(首先需要通过命令 pip install huggingface_hub 安装它): huggingface-cli download file> --local-dir --local-dir- �→use-symlinks False 比如: huggingface-cli download Qwen/Qwen1 slightly bad static_groups=False, sym=True, true_sequential=True, model_name_or_path=None, model_file_base_name="model" ) max_len = 8192 # Load your tokenizer and model with AutoGPTQ # To learn about modules for LoRA. By default we tune all linear layers; • lora_weight_path: the path to the weight file for LoRA; • lora_bias: the bias for LoRA; • q_lora: whether to use Q-LoRA. def maybe_zero_3(param):
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 20.6 get_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 20.7 print_summary io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix 文档。 你也可以直接使用 HDF5 数据集: import h5py with h5py.File('input/file.hdf5', 'r') as f: x_data = f['x_data'] model.predict(x_data) 快速开始 36 3.3.19 Keras 配置文件保存在哪里? 用于防止在某些操作中被零除的 epsilon 模糊因子。 • 默认浮点数据类型。 • 默认后端。详见 backend 文档。 同 样, 缓 存 的 数 据 集 文 件 (如 使 用 get_file() 下 载 的 文 件) 默 认 存 储 在 $HOME/.keras/datasets/ 中。 3.3.20 如何在 Keras 开发过程中获取可复现的结果? 在模型的开发过程中,能够在
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Prerequisites ● We assume you are already familiar with… 1. Python3 ■ if-else, loop, function, file IO, class, ... ■ refs: link1, link2, link3 2. Deep Learning Basics ■ Prof. Lee’s 1st & 2nd lecture expected values ● Dataloader: groups data in batches, enables multiprocessing ● dataset = MyDataset(file) ● dataloader = DataLoader(dataset, batch_size, shuffle=True) More info about batches and shuffling from torch.utils.data import Dataset, DataLoader class MyDataset(Dataset): def __init__(self, file): self.data = ... def __getitem__(self, index): return self.data[index] def
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterCompressionTechniquesAutomationPyTorchReleaseNotes机器学习课程温州大学08深度卷积神经网络神经网神经网络AdvancedQCon北京2018键盘输入键盘输入彭博应用李碧野AI模型千问qwen中文文档Keras基于PythonMachinePytorchTutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩