积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)

语言

全部英语(7)中文(简体)(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.055 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    time could still turn out to be expensive. There is also a very real concern around the carbon footprint of datacenters that are used for training and deploying these large models. Large organizations about. First, we have quality metrics like accuracy, precision, recall, F1, AUC, etc. Then we have footprint metrics like model size, latency, RAM, etc. Empirically, we have seen that larger deep learning train and deploy hence worse footprint. On the other hand, smaller and shallower models might have suboptimal quality. Figure 1-6: Trade-offs between quality metrics and footprint metrics. In case we have
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    changes to add a couple of windows and a balcony. Similarly, to gain orders of magnitude in terms of footprint or quality, we should consider employing suitable efficient architectures. The progress of deep Efficient Architectures aim to improve model deployability by proposing novel ways to reduce model footprint and improve inference efficiency while preserving the problem solving capabilities of their giant 2. Even after compression, the vocabulary itself is large: Large vocabularies have a tangible footprint by themselves, which excludes the actual embeddings. They are persisted with the model to help with
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    compression techniques. Compression techniques aim to reduce the model footprint (size, latency, memory etc.). We can reduce the model footprint by reducing the number of trainable parameters. However, this approach categories: footprint metrics such as model size, prediction latency, RAM consumption and the quality metrics, such as accuracy, F1, precision and recall as shown in table 2-1. Footprint Metrics Quality ● Accuracy ● Precision ● Recall ● F1 ● AUC Table 2-1: A few examples of footprint and quality metrics. The footprint and the quality metrics are typically at odds with each other. As stated earlier
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    that enable us to achieve our quality goals. High quality models have an additional benefit in footprint constrained environments like mobile and edge devices where they provide the flexibility to trade learning techniques. It is followed by a short discussion on exchanging model quality and model footprint. An in-depth discussion of data augmentation and distillation follows right after. Following the and/or label efficient training setup, can we exchange some of this to achieve a model with a better footprint? The next subsection elaborates it further. Using learning techniques to build smaller and faster
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    without increasing the footprint of the model (size, latency, etc). And as we have described earlier, some of these improved quality metrics can be traded off for a smaller footprint as desired. Continuing techniques to help you improve your model’s quality metrics without taking a hit on any of the footprint metrics. These techniques might get superseded by other better methods over time, but again our chapter 3, we found that distillation was a very handy technique to improve our model’s quality v/s footprint tradeoff. The motivation behind Subclass Distillation (Mueller et al.24) comes from the observation
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    precision. We will leave the biases untouched since they do not contribute significantly to the layer’s footprint. num_bits = 8 weights_dequantized, weights_reconstruction_error_quant = simulate_quantization( their specific model training setup. Sparsity by itself helps with compressing the model size (footprint metric) since many connections can be removed without a noticeable impact on quality metrics. However compression technique, yet implementing it is quite straightforward. We can achieve quality and footprint gains on top of quantization because clustering is a much more generic approach of allocating precision
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    turning the knobs (the hyperparameters) until we are satisfied with the sound (model quality and footprint) that each string produces. Unlike the guitar which has a few knobs, the hyperparameter search space
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    定层的数据作为输入,跨多个后续层 对数据进行处理,然后将数据发送到下一个GPU。与单个GPU所能处理的数据相比,我们可以用更大的网络 处理数据。此外,每个GPU占用的显存(memory footprint)可以得到很好的控制,虽然它只是整个网络显 存的一小部分。 然而,GPU的接口之间需要的密集同步可能是很难办的,特别是层之间计算的工作负载不能正确匹配的时候, 还有层之间的接口需要大量的
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterIntroductionArchitecturesCompressionTechniquesAdvancedTechnicalReviewAutomation动手深度学习v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩