积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)机器学习(9)

语言

全部英语(7)中文(简体)(2)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    arithmetic. APEX AMP is included to support models that currently rely on it, but torch.cuda.amp is the future-proof alternative and offers a number of advantages over APEX AMP. ‣ Guidance and examples demonstrating arithmetic. APEX AMP is included to support models that currently rely on it, but torch.cuda.amp is the future-proof alternative and offers a number of advantages over APEX AMP. ‣ Guidance and examples demonstrating arithmetic. APEX AMP is included to support models that currently rely on it, but torch.cuda.amp is the future-proof alternative and offers a number of advantages over APEX AMP. ‣ Guidance and examples demonstrating
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    each trial is a set of values for the respective hyper-parameters. What varies across them is how future trials are constructed based on past results. Figure 1-12: Bayesian Optimization over two dimensions cross is a trial (pair of x1 and x2 values) that the algorithm evaluated. Bayesian Optimization picks future trials in regions that were more favorable. Source. As an extension to HPO, Neural Architecture recall, etc.), and the feedback is passed back to the controller to make better suggestions in the future. NAS has been used to generate State of the Art networks for common datasets like CIFAR-10, ImageNet
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 华为云深度学习在文本分类中的实践-李明磊

    predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could
    0 码力 | 23 页 | 1.80 MB | 1 年前
    3
  • pdf文档 keras tutorial

    classification. Sometimes, we may need to look into the future to fix the past. In this case bidirectional RNN is helpful to learn from the past and predict the future. For example, we have handwritten samples in algorithm: Check whether the evaluation of the model is successful. If yes, save the algorithm for future prediction purpose. If not, then modify or choose new algorithm / model and finally, again train
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    create from your unlabeled dataset, a few simple pretext tasks can be to predict the last element (future) from the previous elements (past), or the other way around. Again to re-emphasize we are just pretending that you can explore, even if these individual techniques are replaced by superior methods in the future. For instance, label smoothing helps avoid overconfident predictions and hence overfitting. Curriculum
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    words are quite far apart in the sequence. Moreover, the attention layer attends to both past and future positions. Figure 4-18: A visual representation of the attention the word corporation pays to each that these words are far apart. Moreover, the word corporation takes into account both the past and future words. Table 4-3 shows a comparison of the quality metrics and the latencies of the two models.
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    基于SLAM技术的VR/AR可以实现Inside-Out方案:将传感器固定在使用者端。 优点:不需要提前布置环境中的传感器,且没有活动范围的限制。 《The Devices of VR: Part 3 – The Future of VR》 SLAM应用介绍 • 增强现实:Google Tango Google的Tango项目演示视频 Tango为终端开发者提供了从硬件到软件的整套AR开发套件 SLAM应用介绍
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    order to obtain re- ward, but it also has to explore in order to make better action selections in the future. Dilemma: neither exploitation nor exploration can be pursued exclu- sively without failing at the
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    into the given Model object from the given checkpoint path. We are going to use these callbacks in future projects as well. import os # Now let us create a callback for saving the best checkpoint so far
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterIntroduction华为深度学习文本分类实践李明磊kerastutorialAdvancedTechniquesTechnicalReviewArchitectures复杂环境视觉同时定位地图构建LectureOverview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩