积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)机器学习(20)

语言

全部英语(13)中文(简体)(7)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    Theano, TensorFlow, Caffe, Mxnet etc., Keras is one of the most powerful and easy to use python library, which is built on top of popular deep learning libraries like TensorFlow, Theano, etc., for creating or Cognitive Toolkit (CNTK). Theano is a python library used for fast numerical computation tasks. TensorFlow is the most famous symbolic math library used for creating neural networks and deep learning Linux or Mac)  Python version 3.5 or higher. Python Keras is python based neural network library so python must be installed on your machine. If python is properly installed on your machine, then
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    precursor to the modern language abbreviations employed in "texting" or the use of short message standard (SMS) services such as Twitter. For telegrams, space was at a premium—economically speaking—and precursor to the modern language abbreviations employed in "texting" or the use of short message standard (SMS) services such as Twitter. Length constraints, and the initial handicap of having to enter up the required libraries, and loading the training and validation sets. We leverage the nlpaug library to perform the augmentations. It provides a simple 5 Maas, Andrew, et al. "Learning word vectors
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    model and wraps the prunable blocks for sparse training using TFMOT (Tensorflow Model Optimization) library. In this case, we prune the 50% of the weights in each prunable block using magnitude-based pruning performance. Let's go ahead and strip the pruning weights from the model that were added by the TFMOT library as shown below. # Strip the pruning wrappers from the model. stripped_model = tfmot.sparsity.keras weights, and bias initialized randomly using the normal (gaussian) distribution with mean = 0.0, and standard deviation = 1.0. We will also simulate the forward-pass behavior. np.random.seed(10007) def g
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    deep learning framework and provides accelerated NumPy-like functionality. PyTorch also includes standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, Framework containers are no longer tested on Pascal GPU architectures. ‣ Transformer Engine is a library for accelerating Transformer models on NVIDIA GPUs. It includes support for 8-bit floating point Framework containers are no longer tested on Pascal GPU architectures. ‣ Transformer Engine is a library for accelerating Transformer models on NVIDIA GPUs. It includes support for 8-bit floating point
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    Framework EasyVision EasyRec GraphLearn EasyTransfer 标准化: Standard Libraries and Solutions 标准化: Standard Libraries EasyRec: 推荐算法库 标准化: Standard Libraries ImageInput Data Aug VideoInput Resnet RPNHead 分布式查询 功能完备:  GSL/负采样  主流图算法  异构图 (user/item/attribute)  动态图 标准化: Standard Libraries Graph-Learn: 分布式图算法库 标准化: Standard Solutions Continuous Optimization: Active learning Data Label Model Serving e-Know Your Customer eKYC eKYC Server eKYC SDK/API  多语言、国际化  多种证件版式  准确率领先同类产品  集成方便 标准化: Standard Solutions 智能推荐解决方案: 推荐请求 PAI-Studio–建模平台 召 回 模 型 EasyRec GraphLearn Alink 排 序 模 型 模型训练评估
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    for HPO. A more sophisticated problem would be to learn larger blocks and full networks, where one standard way to do so is described in Figure 1-13. Figure 1-13: The controller can be thought of as a unit networks that get the best quality, while incurring the least latency during inference. Figure 1-14: Standard Transformer Encoder block (left), and an Evolved Transformer Encoder block (right). While the former weights for each input pixel. This clearly saves the number of parameters when you compare it to a standard multi-layer perceptron (MLP) network. Avoiding over-parameterization further helps in making the
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    approaches (and other schemes like Ternary Weight Networks6) can lead to efficient implementations of standard operations where multiplications and divisions are replaced by cheaper operations like addition fashion_mnist) Creating and Compiling the Model The create_model() function, described below, uses the standard tensorflow APIs to create a model. We expect an input of shape [28, 28, 1] (excluding the first label 2, for example, to its one-hot representation [0 0 1 0 0 0 0 0 0 0]. The optimizer is the standard Adam8 optimizer with the default learning rate. Feel free to tweak the learning rate and measure
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    f (x) h ∇uf (x) represents the rate at which f is increased in direction u When u is the i-th standard unit vector ei, ∇uf (x) = f ′ i (x) where f ′ i (x) = ∂f (x) ∂xi is the partial derivative of is a vector function ∇f : Rn → Rn defined by ∇f (x) = n � i=1 ∂f ∂xi ei where ei is the i-th standard unit vector. In another simple form, ∇f (x) = � ∂f ∂x1 , ∂f ∂x2 , · · · , ∂f ∂xn �T Feng Li
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    test_dataset.shuffle(test_dataset.cardinality()).batch(BATCH_SIZE) We will import the tensorflow_text library so that we can use the BERT model which relies on certain tensorflow ops. import os # tensorflow_text ops used in our model. import tensorflow_text as tf_text Next we will import the tensorflow_hub library so that we can import pre-trained BERT models directly from Tensorflow Hub. import tensorflow_hub
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 华为云深度学习在文本分类中的实践-李明磊

    手机不错,高大上 正面 手机太差劲了,又贵又卡 负面 续航给力,价格实在 正面 9 1 3 2 4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 10 深度学习框架 Standard raw text Tokenization Indexing Pre embedding Classification Matching Wordpiece Keras tokenizer
    0 码力 | 23 页 | 1.80 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterTechniquesAdvancedCompressionPyTorchReleaseNotes阿里云上深度学习建模实践程孟力IntroductionLectureLinearRegressionTechnicalReview华为文本分类李明磊
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩