积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)机器学习(23)

语言

全部英语(16)中文(简体)(7)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.044 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 1: Overview

    Driving on four-lane highways using vision sensors P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded while ob- serving a human driver Feng Li interaction (with environment) Goal-directed learning Learning what to do and its effect Trial-and-error search and delayed reward Feng Li (SDU) Overview September 6, 2023 34 / 57 Reinforcement Learning potential for bias. Feng Li (SDU) Overview September 6, 2023 50 / 57 The Curse of Dimensionality Handling complexity Involve many variables, how can we handle this complexity without get- ting into trouble
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    PyTorch RN-08516-001_v23.07 | 12 ‣ CVE-2022-45198 - Pillow before 9.2.0 performs Improper Handling of Highly Compressed GIF Data (Data Amplification). ‣ CVE-2022-45199 - Pillow before 9.3.0 allows corresponding libraries in our release: ‣ CVE-2022-45198 - Pillow before 9.2.0 performs Improper Handling of Highly Compressed GIF Data (Data Amplification). ‣ CVE-2022-45199 - Pillow before 9.3.0 allows including gradient AllReduce, Optimizer, and Parameter AllGather operations could fail with a CUDA error. We recommend reducing the scope of the CUDA graph capture as a workaround. PyTorch RN-08516-001_v23
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Being able to use as little data for training is critical when the user-data might be sensitive to handling / subject to various restrictions such as the General Data Protection Regulation (GDPR) law6 in
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    number of precision bits to all subranges of the same length. In this scenario, the dequantization error would be large for ranges where the data is densely distributed. Quantization-aware training can mitigate losses by making the network resilient to the errors, but if we want to minimize the dequantization error, this is not an ideal situation. Refer to figure 5-6 for an illustration of this problem. 13 Kurtz elements. For a moment, let’s assume that the centroids we obtain are optimal, i.e. the reconstruction error when we decode the encoded representation is minimal14. In such a scenario, we can list all the centroids
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 keras tutorial

    all the modules, it will add everything and if anything went wrong, you will get module not found error message. Keras 9 This chapter explains Keras backend implementations TensorFlow represent the data format.  epsilon represents numeric constant. It is used to avoid DivideByZero error.  floatx represent the default data type float32. You can also change it to float16 or float64 function and Optimizer are used in learning phase to find the error (deviation from actual output) and do optimization so that the error will be minimized.  Fit the model: The actual learning
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Machine Learning

    4 � = �3 8 � 12 / 19 Fundamental Equations • The error in the j-th neuron in the l-th layer: δ[l] j = ∂L ∂z[l] j • An equation for the error in the output layer δ[L] j = ∂L ∂a[L] j σ′(z[L] j ) Fundamental Equations • An equation for the error δl in terms of the error in the next layer δl+1 δ[l] = ((w[l+1])T δ[l+1]) ⊙ σ′(z[l]) • (w[l+1])T δ[l+1] is to move the error backward through the networks, giving of measure of the error at the output of the l-th layer • ((w[l+1])T δ[l+1]) ⊙ σ′(z[l]) is to move the error backward through the activation function in the layer l, giving us the error δl in the weight
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    authors report needing fewer labeled examples. Refer to figure 6-6 for a comparison between the error obtained by training from scratch v/s using pre-training strategies. 5 WikiText-103 dataset is derived Text Classification." arXiv, 18 Jan. 2018, doi:10.48550/arXiv.1801.06146. Figure 6-6: Validation error w.r.t. number of training examples for different training methods on IMDb (from scratch, ULMFiT supervised: would be easier to learn. The authors report a statistically significant difference between the final error in the word prediction curriculum and non-curriculum strategies. How do we go about implementing
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . 134 7.2.1 mean_squared_error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.2 mean_absolute_error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.3 mean_absolute_percentage_error . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.4 mean_squared_logarithmic_error . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.5 损失函数(或称目标函数、优化评分函数)是编译模型时所需的两个参数之一: model.compile(loss='mean_squared_error', optimizer='sgd') from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd') 你可以传递一个现有的损失函数名,或者一个 TensorFlow/Theano
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    and thus save some costs? What if it did not matter to us if x was stored/transmitted with some error (-5.023 v/s -5.0)? If we can tolerate some loss of precision, can we use b-bits and save some space dequantized array upon running the code. Note that the last element was supposed to be 10.0, and the error is 2.5. array([-10. , -7.5, -5. , -2.5, 0. , 2.5, 5. , 7.5, 7.5]) So far so good! We the two weights using the Root Mean Square Error (RMSE), which gives an idea of the amount of information lost in the quantization process. As we see, the error is quite small. weights_dequantized = de
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    the training data as closely as possible. To measure the error between h✓ and the training data, we define a cost function (also called error function) J(✓) : Rn+1 ! R as follows J(✓) = 1 2 m X i=1 optimization method. In each iteration, the parameters are updated according to the gra- dient of the error (i.e., the cost function) with respect to one training sample only. Hence, it entails very limited
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
LectureOverviewPyTorchReleaseNotesEfficientDeepLearningBookEDLChapterIntroductionAdvancedCompressionTechniqueskerastutorialMachineTechnicalReviewKeras基于Python深度学习onLinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩