积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(53)机器学习(53)

语言

全部中文(简体)(27)英语(26)

格式

全部PDF文档 PDF(53)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 53 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    examples, see: ‣ PyTorch website ‣ PyTorch project This document provides information about the key features, software enhancements and improvements, known issues, and how to run this container. PyTorch RN-08516-001_v23 details, see Deep Learning Frameworks Support Matrix. Key Features and Enhancements This PyTorch release includes the following key features and enhancements. ‣ PyTorch container image version 23.07 GitHub and NGC. ‣ BERT model: Bidirectional Encoder Representations from Transformers (BERT) is a new method of pretraining language representations which obtains state-of-the-art results on a wide array
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    Convolutional Neural Nets (CNNs) were another important breakthrough that enabled learning spatial features in the input. Recurrent Neural Nets (RNNs) facilitated learning from the sequences and temporal having an algorithmic way to meaningfully represent these inputs using a small number of numerical features, will help us solve tasks related to these inputs. Ideally this representation is such that similar similar representations. We will call this representation an Embedding. An embedding is a vector of features that represent aspects of an input numerically. It must fulfill the following goals: a) To compress
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ........................................................................................... 1 Features ............................................................................................... learning applications. Features Keras leverages various optimization techniques to make high level neural network API easier and more performant. It supports the following features:  Consistent, simple choose download based on your OS. Create a new conda environment Launch anaconda prompt, this will open base Anaconda environment. Let us create a new conda environment. This process is similar to
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    layers import Embedding from keras.layers import LSTM model = Sequential() model.add(Embedding(max_features, output_dim=256)) model.add(LSTM(128)) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) = Sequential() model.add(Dense(2, input_dim=3, name='dense_1')) # 将被加载 model.add(Dense(10, name='new_dense')) # 将不被加载 # 从第一个模型加载权重;只会影响第一层,dense_1 model.load_weights(fname, by_name=True) 3.3.6.4 处 整数张量,表示将与输入相乘的二进制 dropout 掩层的形状。例如,如果 你的输入尺寸为 (batch_size, timesteps, features),然后你希望 dropout 掩层在所有 时间步都是一样的,你可以使用 noise_shape=(batch_size, 1, features)。 • seed: 一个作为随机种子的 Python 整数。 参考文献 • Dropout: A Simple
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    for a new task: 1. Data Efficiency: It relies heavily on labeled data, and hence achieving a high performance on a new task requires a large number of labels. 2. Compute Efficiency: Training for new tasks tasks requires new models to be trained from scratch. For models that share the same domain, it is likely that the first few layers learn similar features. Hence training new models from scratch for these across specific tasks in that domain. They can be adapted to solve the target task by: 1. Adding a new prediction head to the pre-trained model which can translate the general representations to the task
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    and identically distributed, i.i.d.)。样本有时也叫做数据点 (data point)或者数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates)) 的属性组成。机器学习模型会根据这些属性进行预测。在上面的监督学习问题中,要预测的是一个特殊的属 性,它被称为标签(label,或目标(target))。 true_b = 4.2 features, labels = synthetic_data(true_w, true_b, 1000) 47 https://discuss.d2l.ai/t/1775 3.2. 线性回归的从零开始实现 95 注意,features中的每一行都包含一个二维数据样本,labels中的每一行都包含一维标签值(一个标量)。 print('features:', features[0] '\nlabel:', labels[0]) features: tensor([1.4632, 0.5511]) label: tensor([5.2498]) 通过生成第二个特征features[:, 1]和labels的散点图,可以直观观察到两者之间的线性关系。 d2l.set_figsize() d2l.plt.scatter(features[:, (1)].detach().numpy()
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    mapping data to higher dimensions where it exhibits linear patterns Apply the linear model in the new input space Mapping is equivalent to changing the feature representation Feng Li (SDU) SVM December each example as x → {x, x2} Each example now has two features (“derived” from the old representa- tion) Data now becomes linearly separable in the new representation Feng Li (SDU) SVM December 28, 2021 {x2 1, √ 2x1x2, x2 2} Each example now has three features (“derived” from the old represen- tation) Data now becomes linearly separable in the new representation Feng Li (SDU) SVM December 28, 2021
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    feature space where it exhibits linear patterns, we can employ the linear classification model in the new feature space. 8 Figure 3: Non-linear data v.s. linear classifier We take the following binary classification {x, x2}, such that each sample now has two features (“derived” from the old representation). As shown in Fig. 4 (b), data become linearly separable in the new higher-dimensional feature space (a) (b) x1xn, · · · , xn−1xn} where each new feature uses a pair of the original features. It can be observed that, the feature mapping leads to a huge number number of new features, such that i) computing the mapping
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    regression model using gradient descent algorithm, based on which, we can predict the height given a new age value. In Matlab/Octave, you can load the training set using the commands x = load ( ’ ex1x . with n = 1 features ( in addition to the usual x0 = 1, so x ∈ R2 ). If you’re using Mat- lab/Octave, run the following commands to plot your training set (and label the axes): figure % open a new f i g u training data according to θ. The plotting commands will look something like this: hold on % Plot new data without c l e a r i n g old p l o t plot ( x ( : , 2 ) , x∗ theta , ’− ’ ) % remember that x
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    performance threshold (in terms of accuracy, precision, recall or other performance metrics). We designate a new model training setup to be more sample efficient, if it achieves similar or better performance with the highest possible accuracy with the original training costs: We can let the model train with the new learning techniques. In many cases, this will improve performance. Let’s say that the 300 KB model work on the model. We use a pre-trained ResNet50 model with the top (softmax) layer replaced with a new softmax layer with 102 units (one unit for each class). Additionally, we add the recommended resnet
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 53 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterArchitectureskerastutorialKeras基于Python深度学习AdvancedTechniquesTechnicalReview动手v2LectureSupportVectorMachineonExperimentLinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩