积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)机器学习(20)

语言

全部英语(15)中文(简体)(5)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.366 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    Framework containers are no longer tested on Pascal GPU architectures. ‣ Transformer Engine is a library for accelerating Transformer models on NVIDIA GPUs. It includes support for 8-bit floating point introduced in the Aggregated Residual Transformations for Deep Neural Networks paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions Framework containers are no longer tested on Pascal GPU architectures. ‣ Transformer Engine is a library for accelerating Transformer models on NVIDIA GPUs. It includes support for 8-bit floating point
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    matrix size. As shown in the output below, the sparsified compressed matrix is smaller than the regular compressed matrix by nearly 50%. weights = np.random.normal(size=(100, 100)).astype(np.float32) https://github.com/google/XNNPACK Project: Lightweight model for pet filters application Recall that our regular CNN model in the pet filters project consisted of thirteen convolution blocks and five deconvolution model and wraps the prunable blocks for sparse training using TFMOT (Tensorflow Model Optimization) library. In this case, we prune the 50% of the weights in each prunable block using magnitude-based pruning
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 keras tutorial

    Theano, TensorFlow, Caffe, Mxnet etc., Keras is one of the most powerful and easy to use python library, which is built on top of popular deep learning libraries like TensorFlow, Theano, etc., for creating or Cognitive Toolkit (CNTK). Theano is a python library used for fast numerical computation tasks. TensorFlow is the most famous symbolic math library used for creating neural networks and deep learning Linux or Mac)  Python version 3.5 or higher. Python Keras is python based neural network library so python must be installed on your machine. If python is properly installed on your machine, then
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    Keras: 基于 Python 的深度学习库 Keras: The Python Deep Learning library* Author: Keras-Team Contributor: 万 震 (WAN Zhen) � wanzhenchn � wanzhen@cqu.edu.cn 2018 年 12 月 24 日 *Copyright © 2018 by Keras-Team Chinese Keras Markdown is that it is easy to read locally when learning the Keras Deep Learning Library. For the latest PDF version, please visit https://github.com/wanzhenchn/keras-docs-zh. Thanks for kernel 权值矩阵的正则化函数 (详见regularizer)。 • recurrent_regularizer: 运用到 recurrent_kernel 权值矩阵的正则化函数 (详见 regular- izer)。 • bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。 • activity_regularizer: 运用到层输出(它的激活值)的正则化函数
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    up the required libraries, and loading the training and validation sets. We leverage the nlpaug library to perform the augmentations. It provides a simple 5 Maas, Andrew, et al. "Learning word vectors technologies. 2011. mechanism to chain multiple augmentations. It can be replaced with any other library per individual preference. %%capture # We will use nlpaug to augment the text samples. !pip install function. Now, let’s add some text augmentations to the mix and see if that helps. The nlpaug python library offers concise ways to apply sentence, word and character augmentations. We shuffle sentences, substitute
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    Trademark Policy at 
 Linuxfoundation.org/trademark-usage/ 1 Brand Guidelines PyTorch Symbol Our expression is best communicated when it is supported by the Symbol — a simple graphic that adds intrigue itself. It’s important for the wordmark to always be displayed in the typeface Freight Sans Regular, and to maintain the spacing and proportions shown here. Choose the appropriate lockup depending
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    lines to code in comparison. • It is easy to debug and understand the code. • Python usage − This library is considered to be Pythonic which smoothly integrates with the Python data science stack. • It functions to choose from • L1, MSE, Cross Entropy …... Model • In PyTorch, a model is represented by a regular Python class that inherits from the Module class. • Two components • __init__(self): it defines modules • 'Sequential' layer modules Dataset • Dataset • In PyTorch, a dataset is represented by a regular Python class that inherits from the Dataset class. You can think of it as a kind of a Python list
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    test_dataset.shuffle(test_dataset.cardinality()).batch(BATCH_SIZE) We will import the tensorflow_text library so that we can use the BERT model which relies on certain tensorflow ops. import os # tensorflow_text ops used in our model. import tensorflow_text as tf_text Next we will import the tensorflow_hub library so that we can import pre-trained BERT models directly from Tensorflow Hub. import tensorflow_hub also went over a collection of a few other learning techniques that you can incorporate in your regular model training. The goal was to provide an introduction to the broad themes that you can explore
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    (1) Matlab/Octave does not have a library function for the sigmoid, so you will have to define it yourself. The easiest way to do this is through an inline expression: g = i n l i n e ( ’ 1.0 ./ ( 1
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    and so on. Step 2: Dataset Preparation and Vectorization The tensorflow vectorization_layer is a regular layer which can be invoked with a model as well as independently. The output of this layer is a vector Convolution28 (DSC) is a two-step convolution designed to reduce the computational complexity of regular convolution. Its output shape is identical to a convolution layer which makes it an attractive choice footprint than a regular convolution network. Howard et. al. demonstrated that their proposed MobileNets29 (DSC model family for mobile vision applications) perform at par with the regular convolution as
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniqueskerastutorialKeras基于Python深度学习BrandGuidelinesTutorialTechnicalReviewExperimentLogisticRegressionandNewtonMethodArchitectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩