积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(33)系统运维(23)存储(23)Service Mesh(17)云原生CNCF(9)数据库(7)TiDB(7)Istio(5)综合其他(3)人工智能(3)

语言

全部中文(简体)(63)zh(2)英语(1)西班牙语(1)zh-cn(1)

格式

全部PDF文档 PDF(66)TXT文档 TXT(1)PPT文档 PPT(1)
 
本次搜索耗时 0.046 秒,为您找到相关结果约 68 个.
  • 全部
  • 云计算&大数据
  • 系统运维
  • 存储
  • Service Mesh
  • 云原生CNCF
  • 数据库
  • TiDB
  • Istio
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • zh
  • 英语
  • 西班牙语
  • zh-cn
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • text文档 添加测试服务

    0 码力 | 1 页 | 128.00 B | 5 月前
    3
  • pdf文档 TVM工具组

    绝赞招聘中 TVM CAFFE 前端 2019·11·16绝赞招聘中 TVM 在平头哥 • 工具链产品 平头哥芯片平台发布的配套软件中, TVM 是工具链产品的重要组成部分: 负责将预训练好的 caffe 或者 tensorflow 的模型,转换到 LLVM IR,最后生成可以在无剑 SoC 平台上 执行的二进制。绝赞招聘中 为何添加 caffe 前端? 客户需求 评估 caffe 前端 当前各大芯片厂商的部署工具大多数都支持,支持 caffe 前端有利于提高竞争力。 开源社区 存量的开源 caffe 网络模型众多,TVM 直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 caffe 。 net 已测试网络:alexnet / densenet121 inception v4 / mobilenet v1 / mobilenet v2 / resnet50 / squeezenet v1 / vgg16 / ssd / fcn-8s op 已测试 op:innerproduct / conv2d / reshape / softmax / relu / pooling / lrn / dropout / batchnorm / scale
    0 码力 | 6 页 | 326.80 KB | 5 月前
    3
  • pdf文档 Curve质量监控与运维 - 网易数帆

    作为一个复杂的大型分布式存储系统,Curve 需要利用科学的方法论和专业的工具,在整个 软件生命周期内更好地为用户服务:  质量——向用户交付稳定可靠的软件;  监控——直观地展示Curve运行状态;  运维——保障Curve始终稳定高效运行。 质量 ✓ 质量管理体系(设计、开发、review、CI) ✓ 测试方法论(单元测试、集成测试、系统测试) 监控 ✓ 监控架构 ✓ 指标采集、后端处理、可视化展示 运维 ✓ 运维特性 (易部署、易升级、自治) ✓ 运维工具(部署工具、管理工具) 4/33背景 01 02 03 04 Curve质量控制 Curve监控体系 Curve运维体系软件质量 软件质量的定义是:软件与明确地和隐含地定义的需求相一致的程度。 为了确保最终交付的软件满足需求,必须将质量控制贯穿于设计、开发到测试的整个流程中。 设计  设计流程  文档规范 开发 开发  编码规范与提交流程  版本管理 测试  测试方法论  CI与异常测试 6/33设计流程 Curve团队采用敏捷开发模式,负责人在制定迭代计划时,确认哪些任务需要设计 文档:  小需求(改动小)将实现思路记录到任务管理系统中(JIRA),即可进行开发;  大需求(新模块、复杂功能)需要输出独立设计文档,并进行评审;对于功能或 性能影响较大的功能,还需要进行POC验证;评审和验证通过后才能启动开发
    0 码力 | 33 页 | 2.64 MB | 5 月前
    3
  • pdf文档 TiDB中文技术文档

    JSON 函数 GROUP BY 聚合函数 其他函数 精度数学 SQL 语句语法 数据定义语句 (DDL) 数据操作语句 (DML) 事务语句 数据库管理语句 Prepared SQL 语句语法 实用工具语句 JSON 支持 Connectors 和 API TiDB 事务隔离级别 错误码与故障诊断 与 MySQL 兼容性对比 TiDB 内存控制文档 Bit-value Literals Boolean 扩容缩容 集群扩容缩容方案 使用 Ansible 扩容缩容 升级 升级组件版本 TiDB 2.0 升级操作指南 性能调优 备份与迁移 备份与恢复 数据迁移 数据迁移概述 数据迁移 故障诊断 TiDB 周边工具 Syncer Loader TiDB-Binlog PD Control TiKV Control TiDB Controller TiDB-Binlog 部署方案 - 4 - 本文档使用 书栈(BookStack RC1 1.1 Beta 1.1 Alpha 1.0 Pre-GA RC4 RC3 RC2 RC1 TiDB 路线图 性能测试 TiDB Sysbench 性能测试报告 - v1.0.0 TiDB TPC-H 50G 性能测试报告 - v2.0 TiDB Sysbench 性能对比测试报告 - v2.0.0 对比 v1.0.0 - 5 - 本文档使用 书栈(BookStack.CN) 构建 致谢 当前文档
    0 码力 | 444 页 | 4.89 MB | 5 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架 的措施。 2.3 综合治理措施方面。明确技术研发机构、服务提供者、用户、政府 2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、
    0 码力 | 20 页 | 3.79 MB | 28 天前
    3
  • pdf文档 23-云原生观察性、自动化交付和 IaC 等之道-高磊

    分布式跟踪:哪些调用 故障或者拖慢了系统 监控与告警: 主动告诉我 问题发生了! 微服务部署后就像个黑盒子,如何发现问题并在 远端运维是主要的课题,那么就需要从宏观告知 研发人员,并且提供日志、跟踪、问题根因分析 等工具进一步从微观帮助研发人员定位和解决问 题,这是这里在业务上的价值-稳定性赋能。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-2 可观察性是云原生特别关注的运维支撑能力,因为 应用 软件环境 硬件环境 遗留系统 安装配置点 安装配置点 安装配置点 集成点 集成点 集成点 1. 交付人员学习手册文档,需要在客户 环境做“安装配置”和“与遗留系统集成” 两方面工作。 2. 安装配置:在硬件上安装软件,不乏 针对硬件特性的适配、还需要安装OS 等,最后还要在OS上安装应用,并且 还要保证应用软件依赖拓扑结构不会 出错。 3. 集成点:包括新环境的硬件、软件和 应用与遗留系统的集成,比如,监控、 aaS本身, 或者大家常说的定制化场景,如果不进行解耦就会有长期存在的矛盾。 • 为了应付定制化,客户需要等待平台研发的排期,因为平台研发需要定制 化处理定制化场景下的软件、运维工具或者规范等等,并需要不断的测试。 • 为了应付各类的环境的问题,势必要求交付人员的能力非常强,也是成本 居高不下的原因之一。 在K8s这种环境中,存在两种定制化的手段:其一是Deployment API,但是它却
    0 码力 | 24 页 | 5.96 MB | 5 月前
    3
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    程序设计语言 简体中文版 11. 编写自动化测试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.1. 如何编写测试 . . . . . . . . . . . . . . . 220 11.2. 控制测试如何运行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 11.3. 测试的组织结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 12.4. 采用测试驱动开发完善库的功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 562 页 | 3.23 MB | 9 天前
    3
  • pdf文档 Curve设计要点

    github代码仓库: https://github.com/opencurve/curve 概述背景 01 02 03 04 总体设计 系统特性 近期规划背景 • 多个存储软件:SDFS、NEFS、NBS • 已有的开源软件:Ceph • 不能胜任性能、延迟敏感的场景 • 异常场景抖动较大(比如慢盘场景) • 去中心节点设计在集群不均衡的情况下需要人工运维 • 基于通用分布式存储构建上层存储服务背景 • 数据chunk + 校验chunk • 支撑EC存储场景 多个单副本的 chunk 形成 EC 组 一个对象作为 EC 组的一个满条带 挖洞即时空间回收拓扑 • 管理和组织机器 • 软件单元:chunkserver • 物理机:server • 故障域:zone • 物理池:poolIO流程 client MDS leader Chunk server 1、发起请求 Ceph(L/N) Curve 151.89% 204.56% 单卷4K随机读写平均延迟(ms) 1.244 3.2 3.1 0.998 4K随机写 4K随机读 61.12 % 67.8% 测试环境:6台服务器*20块SATA SSD,E5-2660 v4,256G,3副本场景 高性能高性能 • quorum机制:raft • 轻量级快照 • io路径上的优化 • filepool落盘零放大
    0 码力 | 35 页 | 2.03 MB | 5 月前
    3
  • pdf文档 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊

    为了进一步加速业务APP交付速度,而专业业务人员并不熟悉IT领域知识,但是低代码可以使得非IT人员快速构建业务系统成为可能,低代码平台是业 务研发和运行一体的平台,其内部实现并不容易,想落地更不容易,关键在于人们现在存在巨大的误区!工具思维导致落地艰难! 业务沟通、需求分析与设计的交流平台 低代码平台表达的是业务逻辑。低代码平台的作用是将业务需求中的逻辑关系理清楚,帮助企业实现这个逻辑。 好的低代码平台要能适应企业的需求变化,提供需求变更管理 SLB会根据算力资源需要进行切流。 • 混合云本质是一种资源运用形式,资源 使用地位不对等,以私有云为主体。 控制台 控制台 高级能力-多云(资源角度) 调研机构Gartner公司指出,80%的内部部署开发软件现在支持云计算或云原生,不断发展的云计算生态系统使企业能够更快、 更灵活、更实时地运营,从而带来竞争压力。接受云原生和多云方法作为一种新常态,意味着企业可以避免云计算供应商锁定, 可以提供超过5个9 仍然在争论中,可参考或者背书的实例 少,导致落地缓慢。 • 组织结构升级 • 企业IT文化、工作流程、知识体系、工具集的总合升级 • 应用架构升级 • re-platform • re-build • re-host • 运维模式升级 • 从传统面向操作规则的运维转变为面向观测数据的自动化运维 • 重新定义软件交付模式 • 整体打包交付 • Git=Single Version Of Truth • 声明式API
    0 码力 | 20 页 | 5.17 MB | 5 月前
    3
  • pdf文档 24-云原生中间件之道-高磊

    SAST(静态应用程序 安全测试) 白盒测试,通过污点跟踪对源代码或者二进制程序(也包括Docker镜像等) 进行静态扫描,尽可能前置,在IDE编写代码或者提交代码时进行,将极 大优化整体效率和成本 可以无视环境随时可以进行,覆盖漏洞类型全面, 可以精确定位到代码段 路径爆炸问题,并一定与实际相符合,误报率较 高。 DAST(动态安全应用 程序安全测试) 黑盒测试,通过模拟业务流量发起请求,进行模糊测试,比如故障注入 或者混沌测试 语言无关性,很高的精确度。 难以覆盖复杂的交互场景,测试过程对业务造成 较大的干扰,会产生大量的报错和脏数据,所以 建议在业务低峰时进行。 IAST(交互式应用程序 安全测试) 结合了上面两种的优点并克服其缺点,将SAST和DAST相结合,通过插桩 等手段在运行时进行污点跟踪,进而精准的发现问题。是DevSecOps的一 种推荐方式。 如果在被动模式下运行IAST,那么开发测试过程 中 中就可以完成安全扫描,不会像DAST一样导致业 务报警进而干扰测试,同时由于污点跟踪测试模 式,IAST可以像SAST一样精准的发现问题点 SCA(软件成分分析) 有大量的重复组件或者三方库的依赖,导致安全漏洞被传递或者扩散, SCA就是解决此类问题的办法,通过自动化分析组件版本并与漏洞库相 比较,快速发现问题组件,借助积累的供应链资产,可以在快速定位的 同时,推动业务快速修复。 安全左移的一种,在上线前发现依赖组件的安全
    0 码力 | 22 页 | 4.39 MB | 5 月前
    3
共 68 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
添加测试服务TVM工具Curve质量监控运维网易数帆TiDB中文技术文档人工智能人工智能安全治理框架1.023原生观察自动自动化交付IaC高磊Rust程序设计程序设计语言简体文版中文版简体中文版1.85要点27赋能AIoT边缘计算形态以及成熟成熟度模型之道24中间中间件
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩