人工智能安全治理框架 1.0
对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。 (a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻 辑复杂,推理过程属黑灰盒模式,可能导致输出结果难以预测和确切归因,如 有异常难以快速修正和溯源追责。 (b)偏见、歧视风险。算法设计及训练过程中,个人偏见被有意、无意引入, 或者因训练数据集质量问题,导致算法设计目的、输出结果存在偏见或歧视, 甚至输出存在民族、宗教、国别、地域等歧视性内容。 (c)鲁棒性弱风险。由于深度神经网络存在非线性、大规模等特点,人0 码力 | 20 页 | 3.79 MB | 29 天前3Rust 程序设计语言 简体中文版 1.85.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7. 使用包、Crate 和模块管理不断增长的项目 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12.6. 将错误信息输出到标准错误而不是标准输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13. 函数式语言特性:迭代器与闭包 程序设计语言的本质实际在于 赋能(empowerment):无论你现在编写的是何种代码, Rust 能让你在更为广泛的编程领域走得更远,写出自信。(这一点并不显而易见) 举例来说,那些“系统层面”的工作涉及内存管理、数据表示和并发等底层细节。从传统角度来 看,这是一个神秘的编程领域,只为浸润多年的极少数人所触及,也只有他们能避开那些臭名 昭著的陷阱。即使谨慎的实践者,亦唯恐代码出现漏洞、崩溃或损坏。 Rust0 码力 | 562 页 | 3.23 MB | 10 天前3
共 2 条
- 1