Rust 程序设计语言 简体中文版 1.85.0
通过广泛的测 试和经验丰富的开发者的仔细审核代码来捕捉。在 Rust 中,编译器充当了守门员的角色,拒 绝编译包含这些难以察觉的错误的代码,包括并发错误。通过与编译器合作,团队可以将时间 集中在程序逻辑上,而不是追踪 bug。 Rust 也为系统编程世界带来了现代化的开发工具: • Cargo 是内置的依赖管理器和构建工具,它能轻松增加、编译和管理依赖,并使依赖在 Rust 生态系统中保持一致。 第十章深入介绍泛型(generic)、Trait 和生命周期(lifetime),这些功能让你能够定义适用 于多种类型的代码。第十一章全面讲述了测试,因为就算 Rust 有安全保证,也需要测试确保 程序逻辑正确。第十二章中将会构建我们自己的 grep 命令行工具的功能子集实现,用于在文 件中搜索文本。为此会用到之前章节讨论的很多概念。 第十三章探索闭包(closure)和迭代器(iterator),这两个 guess 来使其可变,而不是 &guess。(第四章会更全面地讲解引用。) 使用 Result 类型来处理潜在的错误 我们还没有完全分析完这行代码。虽然我们已经讲到了第三行代码,但要注意:它仍是逻辑行 (虽然换行了但仍是语句)的一部分。后一部分是这个方法(method): .expect("Failed to read line"); 我们也可以将代码这样写: io::stdin()0 码力 | 562 页 | 3.23 MB | 9 天前3人工智能安全治理框架 1.0
权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点, 予 以防范。 4.1 针对人工智能内生安全风险 4.1.1 模型算法安全风险应对 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、- 8 - 人工智能安全治理框架 推理逻辑、技术接口、输出结果提供明确说明,正确反映人工智能系统产生结 果的过程。 (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消除模型算法存在的安全缺陷、歧视性倾向,提高鲁棒性。0 码力 | 20 页 | 3.79 MB | 29 天前3
共 2 条
- 1