Zadig 产品使用手册
释放工程师创造力 DevOps 价值链平台 产 业 数 字 化 核 心 资 产 是 软 件 和 数 据 : 传 统 软 件 / 配 置 / 数 据 迭 代 方 式 已 经 无 法 适 应 , 软 件 工 程 化 时 代 已 然 到 来 。 Z a d i g 软 件 工 程 平 台 是 国 内 落 地 程 度 最 深 、 使 用 范 围 最 广 ( 近 千 家 企 业 ) 的 云 原 及自建资源(容器、主机、车 机、端等),释放云原生价值 和企业创新力 生态开放:广泛开放系统 模块和 OpenAPI ,链接 一切流程、服务、工具和 上下游伙伴 安全简单自主可控:私有化 部署,现有服务 0 迁移成本 、体验丝滑接入容易、学习 使用门槛极低 现存做法大多以「单点工具 + 写脚本」或运管类平台为主, Zadig 则是面向开发者视角,中立,云原生一体化价值链平台。 与现存 DevOps 内部推广难度极高 做完后价值难被证明 通用性、可扩展性、技术先进性强,可以灵活 广泛接入各种技术和业务场景 基于代码管理的 DevOps 方案 Gitee 平台 GitLab 平台 局限性大、全流程安全性低 维护成本高 支持多个服务并行构建部署、产品级发布,可 灵活安全接入多个代码仓及周边工具链 开发 Zadig 核心特性: 运维 真正意义的持续交付:以工程师体验为核心,价值交付为理念,完成需求到发布的全路径。0 码力 | 52 页 | 22.95 MB | 1 年前3Zadig 面向开发者的云原生 DevOps 平台
项目间依赖复杂,环境管理难 • 交付版本依赖工单,发布风险高 • 公共资源 / 业务资源利用率低 赋能多业务:一个平台解决了多异构项目的管理和规范 团队高效协作:定义团队角色工作流模板,随时可用云上环境 价值清晰呈现:为管理者提供全视角效能数据,赋能数字决策 人工低效操作减少 80% 构建资源利用率提升 60% 业务资源利用率提升 30% 统一治理内部规范,开发 自助上线;解放运维,工 需求迭代周期缩短 1-5 倍 解放开发,专注编码 更多的架构和技术提升 测试 效率和质量难以平衡: • 自动化测试难以开展 • 环境不稳定并行验证效率低 • 测试多苦劳,价值难以体现 测试效果提升:独立稳定环境用于测试验收、自动化建设 价值被团队感知:自动化测试从开发到发布被全团队感知 部署频率升高 1-5 倍 验证有效性提升 100% 解放测试,全面自动化 提升效率,建设质量体系 安全 前置安全服务:全流程嵌入安全检测,避免流入业务环节。 全流程安全门禁:关键环节设置安全门禁,快速反馈研发改进 故障拦截率提升 1-3 倍 业务响应效率提升 3-5 倍 全流程安全建设 更多价值体现 组织 靠流程和个人,效率越来越低 • 低人效 / 低质量 / 低效率 / 高成本 • 人淹没在系统的海洋里 • 无数平台手工切换 靠系统和技术,能力长在平台上 • 高人效 / 高质量0 码力 | 59 页 | 81.43 MB | 1 年前3Rust 异步并发框架在移动端的应用 - 陈明煜
Future.poll() Reactor fd fd listen listen find 现有并发框架 Third Party Runtime 目前 Rust 社区最广泛使用的事件 驱动型调度框架,擅长处理大量异 步 IO 的场景。具有非常强大的生 态。 tokio 第一个适配 Rust async/await 原语 的运行时库,与 tokio 类似支持异步 IO ,目前已经半废弃 两种接口拥有两套割裂的调度模式和线程池 华为 Ylong 异步并发框架 Ylong Runtime 并发框架 华为 Rust 异步并发框架,近期计划在 OpenHarmony 上开源。与 Tokio 类似,同样为事 件驱动型调度框架,提供异步 IO 、定时器、同步原 语等功能。但额外提供: 任务优先级调度 异步并行迭代器 结构化并发 Ylong Runtime 对外 接口 APP/SA 调度器0 码力 | 25 页 | 1.64 MB | 1 年前3陈东 - 利用Rust重塑移动应用开发-230618
feature utilize - Existing Codebase 跨平台开发到到底 应该跨什么? UI or Logic ? 利用 Rust 重塑移动应用开发 Rust 在移动端应 用的价值 Rust is the only advanced choice for cross platform development. 利用 Rust 重塑移动应用开发 Rust 的特点0 码力 | 22 页 | 2.10 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程
shared memory ),他的性质类似于 CPU 中的缓 存——和主存相比很小,但是很快,用于缓冲临时数据。还有点特殊的性质,我们稍后会 讲。 • 通常板块数量总是大于 SM 的数量,这时英伟达驱动就会在多个 SM 之间调度你提交的 各个板块。正如操作系统在多个 CPU 核心之间调度线程那样…… • 不过有一点不同, GPU 不会像 CPU 那样做时间片轮换——板块一旦被调度到了一个 SM ,而且他优化得比我们手写的 更好…… • 然后 atomicMax 求数组最大值,也同理。 怪事 • 不过看了一下生成的 PTX 汇编,好像也没有优化掉的样子 ?难道是 CUBIN 那一阶段做的?还是驱动做的?还在向王 鑫磊求教中…… 第 9 章:共享内存进阶 GPU 的内存模型 GPU 的内存模型 全局内存:在 main() 中通过 cudaMalloc 分配的内存 共享内存:每个板块都有一个,通过0 码力 | 142 页 | 13.52 MB | 1 年前3Await-Tree Async Rust 可观测性的灵丹妙药 - 赵梓淇
的独特优势 • Ownership 与 Lifetime • 无栈协程 Async Rust 回顾 Rust 的无栈协程抽象 — Future Async Rust 回顾 • 通过 poll 驱动的状态机 • 组合嵌套为调度单元: Task • async fn 语法糖 Async Rust 观测与调试的痛点 Async Rust 回顾 • 特性: Future 灵活的可组合性 •0 码力 | 37 页 | 8.60 MB | 1 年前3
共 6 条
- 1