Rust 异步并发框架在移动端的应用 - 陈明煜
chenmingyu4@huawei.com 华为 公共开发部 嵌入式软件能力中心 本科就读加州大学圣地亚哥分校,毕业时长两年半, Rustacean 在 华为 目前正在使用 Rust 开发并行调度框架等模块。 Rust 异步并发框架在移动端的应用 陈明煜 chenmingyu4@huawei.com 华为 公共开发部 嵌入式软件能力中心 Applications of Rust Runtime Asynchronous Rust 异步并发框架是许多大型应用、系统具备的底层能力。 区别于多线程编程模型,它带来以下优势: 任务调度颗粒度更小,充分利用线程资源 更可控的线程数 单个任务资源占用:几十 KB -> 几百 Byte 任务切换时间 : 10 微秒 -> 100 纳秒 Rust 语言并没有提供异步并发框架, 只提供异步所需的基本特性: Future Third Party Runtime 目前 Rust 社区最广泛使用的事件 驱动型调度框架,擅长处理大量异 步 IO 的场景。具有非常强大的生 态。 tokio 第一个适配 Rust async/await 原语 的运行时库,与 tokio 类似支持异步 IO ,目前已经半废弃 async-std 更轻量化的调度框架,功能被拆分 到其他多个库中, IO 密集场景性 能不如 Tokio smol0 码力 | 25 页 | 1.64 MB | 1 年前3GPU Resource Management On JDOS
GPU 利用率 – Job 调度 (部门 quota 限制 + 优先级) • 创建训练 – 用户选择集群提供代码地址和执行命令即可 – 选择所用框架(镜像):支持官方,亦可自制 (提供 dockerfile 生成镜像服务) – 选择存储来源:对接了内部的存储 – 填写代码地址,执行的命令等 – 可以选择是否监控训练,提供 tensorboard 任务列表 可以指定 git 的 commit-id commit-id 发起任务 任务详情 可以查看具体的容器列表,以及查看容器的日志和事件 Serving 服务 提供统一便捷的 Serving 服务,只需用户指定模型,即可提供 grpc 和 rest 服务,同时使用 GPU 复用 +HPA 提高 GPU 利用率 创建 Serving 与训练集成 • 用户只需要简单选择机房和 镜像填写模型名即可完成 Serving 服务创建 自有模型0 码力 | 11 页 | 13.40 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅
C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 度算法,轮换着执行着不同的线程,看起来 就好像是同时运行一样,其实每一时刻只有 一个线程在运行。目的:异步地处理多个不 同的任务,避免同步造成的阻塞。 • 并行:多核处理器,每个处理器执行一个线 程,真正的同时运行。目的:将一个任务分 派到多个核上,从而更快完成任务。 举个例子 • 并发:某互联网公司购置了一台单核处理 器的服务器,他正同时处理 4 个 HTTP 请求,如果是单线程的 基于 TBB 的版本:任务组 • 用一个任务组 tbb::task_group 启动多个 任务,一个负责下载,一个负责和用户交 互。并在主线程中等待该任务组里的任务 全部执行完毕。 • 区别在于,一个任务不一定对应一个线程 ,如果任务数量超过 CPU 最大的线程数, 会由 TBB 在用户层负责调度任务运行在 多个预先分配好的线程,而不是由操作系 统负责调度线程运行在多个物理核心。0 码力 | 116 页 | 15.85 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程
1>>>() 后,并不 会立即在 GPU 上执行完毕,再返回。实际上只是把 kernel 这个任务推送到 GPU 的执行队列上,然后立即 返回,并不会等待执行完毕。 • 因此可以调用 cudaDeviceSynchronize() ,让 CPU 陷 入等待,等 GPU 完成队列的所有任务后再返回。从而 能够在 main 退出前等到 kernel 在 GPU 上执行完。 定义在 GPU 当前板块的编号: blockIdx • 总的板块数量: gridDim • 线程 (thread) :并行的最小单位 • 板块 (block) :包含若干个线程 • 网格 (grid) :指整个任务,包含若干个板块 • 从属关系:线程<板块<网格 • 调用语法: <<>> 区分板块和线程有点麻烦?“扁平化”他们! • 你可能觉得纳闷,既然已经有线程可以并行了 稍微快一些,但不完全精确的 __sinf • 两个下划线的 __sinf 是 GPU intrinstics ,精度相当于 GLSL 里的那种。 适合对精度要求不高,但有性能要求的图 形学任务。 • 类似的这样的低精度內建函数还有 __expf 、 __logf 、 __cosf 、 __powf 等。 • 还有 __fdividef(x, y) 提供更快的浮点除法 ,和一般的除法有相同的精确度,但是在 0 码力 | 142 页 | 13.52 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程
C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 线程是进程中的一个实体,是被系统独立分配和调度的基本单位。也有说,线程是 CPU 可 执行调度的最小单位。也就是说,进程本身并不能获取 CPU 时间,只有它的线程才可以。 • 从属关系:进程 > 线程。一个进程可以拥有多个线程。 • 每个线程共享同样的内存空间,开销比较小。 • 每个进程拥有独立的内存空间,因此开销更大。 • 对于高性能并行计算,更好的是多线程。 为什么需要多线程:无阻塞多任务 • 我们的程序常常需要同时处理多个任务。 我们的程序常常需要同时处理多个任务。 • 例如:后台在执行一个很耗时的任务,比 如下载一个文件,同时还要和用户交互。 • 这在 GUI 应用程序中很常见,比如浏览 器在后台下载文件的同时,用户仍然可以 用鼠标操作其 UI 界面。 没有多线程:程序未响应 • 没有多线程的话,就必须等文件下载完了 才能继续和用户交互。 • 下载完成前,整个界面都会处于“未响应”状 态,用户想做别的事情就做不了。0 码力 | 79 页 | 14.11 MB | 1 年前3Await-Tree Async Rust 可观测性的灵丹妙药 - 赵梓淇
异步编程的共同优势 • async/await 关键字 • 用户态调度 • Async Rust 的独特优势 • Ownership 与 Lifetime • 无栈协程 Async Rust 回顾 Rust 的无栈协程抽象 — Future Async Rust 回顾 • 通过 poll 驱动的状态机 • 组合嵌套为调度单元: Task • async fn 语法糖 Async Rust • Backtrace 不够直观 ( 调用栈 -> 调用树 ) • Tracing 无法追踪调用关系的变化 Async Rust 观测与调试的痛点 Async Rust 回顾 • 特性:用户态调度的无栈协程 • Pending Task 不存在栈空间 • 痛点:观测与调试工具无法还原 Pending Task 的执行状态 • 难以得知 Task 阻塞的位置和原因 • 难以调试 Async • GitHub 4.5k Stars • “Materialized View” • 计算:分布式流计算任务,实时增量维护 • 存储: S3 上的 Shared-storage 存储状态和数据 Await Tree 在 RisingWave 中的应用 • 技术挑战 • 计算任务需长期执行,稳定性要求高 • 算子逻辑复杂,计算与存储读写穿插,强依赖 Async • Await-Tree0 码力 | 37 页 | 8.60 MB | 1 年前3Rust分布式账务系统 - 胡宇
Marker 分布式账务系统 A,B,C 在不同分区执行一个事务的 TCC 转账计划 ● 转账计划 ○ 有向无环图 ○ 节点是一个任务 ○ 边是依赖关系 ● 事务层 Marker 负责执行计划 ○ ACID 保证 ○ 依赖控制 ○ 条件执行 ○ 调度账户变动请求 跨分区转账 分布式账务系统 拥抱开源 github: https://github.com/airwallex/Auticuro0 码力 | 27 页 | 12.60 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化
。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 1 次浮点读写 ≈ 8 次浮点加法 • 如果矢量化成功( SSE ): 1 次浮点读写 ≈ 32 次浮点加法 • 如果 CPU 有 4 核且矢量化成功: 可以看到应用了分块 + 预取 + 直写的 x_blur ,和直写的拷贝一样快了。虽然 这里 loadu 重复加载了同样的地址可能还有可优化之处,但既然唯一的瓶颈 已经变成了内存带宽,那我们的缓存优化任务应该是完成了。 Y 方向的插桩比 X 方向慢好多 • 为什么会这样? • 因为 X 方向的插桩所读取的数据,在内存中是连续的。 • 而 Y 方向的插桩所读取的数据,在内存看来表现为跳跃 nx0 码力 | 147 页 | 18.88 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming
(pipeline) 。流水线的目的是能把原本 串行的一系列指令并行化。为了理解为什 么需要流水线,我们先反过来,假设没有 流水线,会有什么坏处。 • 例如,右边你今天早上的任务清单。 • 请问你这些任务总共需要多少时间? 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 存器来指令解码单元才开始继续工作,很 低效。 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 20 分钟 屁股 洗脸 烧开水 刷牙 看比站 吃饭 拉粑粑 5 10 5 15 30 20 为什么需要流水线 • 更高效的办法是,观察每个任务都占用哪些 资源,所占用资源不冲突的可以同时进行, + 20 = 40 分钟,比你快一倍多。 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 20 分钟 屁股 洗脸 刷牙 烧开水 吃饭 看比站 拉粑粑 5 5 10 20 条件跳转指令 • 让不占用相同资源的任务同时进行,这也是 CPU 流水线的初衷。但理想是美好的,现实0 码力 | 47 页 | 8.45 MB | 1 年前3C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起
C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解0 码力 | 32 页 | 11.40 MB | 1 年前3
共 20 条
- 1
- 2