积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(292)综合其他(185)云计算&大数据(129)Weblate(90)Python(89)数据库(60)机器学习(55)OpenShift(49)区块链(48)PyWebIO(48)

语言

全部中文(简体)(739)

格式

全部PDF文档 PDF(606)其他文档 其他(122)PPT文档 PPT(8)DOC文档 DOC(2)TXT文档 TXT(1)
 
本次搜索耗时 0.108 秒,为您找到相关结果约 739 个.
  • 全部
  • 后端开发
  • 综合其他
  • 云计算&大数据
  • Weblate
  • Python
  • 数据库
  • 机器学习
  • OpenShift
  • 区块链
  • PyWebIO
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 华为云深度学习在文本分类中的实践-李明磊

    华为云深度学习在文本分类中的实践 华为 Cloud&AI 李明磊 3 2 3 1 4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 4 文本分类介绍 内容:  买没几天就降价一点都不开心,闪存跑分就五百多点点 ---  外观漂亮音质不错,现在电子产品基本上都是华为的了 ---  汽车不错,省油,性价比高 ---  这个政策好啊,利国利民 --- f(text)=label 词 句子 篇章 对话 5 文本分类方法简史-机器学习 特征提取 特征选择 输入 文本 模型训练 模型部署 评测 label 预测标签 词袋 TFIDF Ngram 词典 … 卡方 PCA 互信息 RFE … 分类器 SVM LR XGBoost 随机森林 … 6 文本分类方法简史-深度学习 输入 文本 模型训练 模型部署 评测 label label 预测标签 RNN CNN LSTM DCNN Attention HAN Transformer Elmo BERT MT-DNN 7 文本分类方法简史-深度学习 神经网络 语言模型 2003  神经网络NLP里程碑: Word2vec 2013 CNN RNN 2014左右 Attention 2014 Elmo, Bert 2018 解决维度灾难
    0 码力 | 23 页 | 1.80 MB | 1 年前
    3
  • pdf文档 情感分类实战

    情感分类实战 主讲人:龙良曲 Google CoLab ▪ Continuous 12 hours ▪ free K80 for GPU ▪ no need to cross GFW Load Dataset Network Load word embedding Train Test 下一课时 GAN Thank You.
    0 码力 | 11 页 | 999.73 KB | 1 年前
    3
  • pdf文档 LR多分类实战

    多分类问题 主讲人:龙良曲 Network Architecture Train em…. 下一课时 PyTorch全连接 层 Thank You.
    0 码力 | 8 页 | 566.94 KB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    达观数据 陈运文 文本智能处理的深度学习技术 达观数据CEO 陈运文 博士 • 中 国 计 算 机 学 会 高 级 会 员 , A C M 和 I E E E 学 会 会 员 , 复 旦 大 学 计 算 机 博 士 和 杰 出 毕 业 生 • 原 腾 讯 文 学 高 级 总 监 、 盛 大 文 学 首 席 数 据 官 、 百 度 核 心 技 术 工 程 师 • 三 十 项 国 家 技 术 挖 掘 技 术 和 相 关 应 用 系 统 的 服 务 个人简介——达观数据CEO 陈运文 达观数据:全球领先的文本智能处理专家 l 为企业提供文本挖掘、知识图谱、搜索引擎和个性化推荐等文本智能处理技术服 务,是国内首家将自动语义分析技术应用于企业数据化运营的人工智能公司 专注于文本挖掘的国际领军人工智能企业 l 获得全球三十大最佳AI企业等荣誉,拥有国家级高新技术企业、CMMI3资质认 证 全 l 覆盖金融、制造、法律、电商、传媒等行业,提升企业文档自动化处理能力 为数百家中国知名客户提供完善的文本智能处理服务 01 文本智能处理背景简介 7 文本 语音 图像 人工智能 Voice Image Text 达观专注于人工智能中的文本处理细分领域 文本处理任务 什么是NLP 概念:Natural Language Processing 自然语言处理 目的
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    softmax回归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.4.1 分类问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.4.2 网络架构 3.4.8 模型预测和评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.5 图像分类数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.5.1 读取数据集 3.6.4 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.6.5 分类精度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.6.6 训练
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Ubuntu 桌面培训 2010

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 6.9.1 软件仓库分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 6.10 添加新语言设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.60 三维文本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 4.87 在绘图区域中编辑文本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 4.88 应用视觉效果
    0 码力 | 524 页 | 57.54 MB | 1 年前
    3
  • pdf文档 2022年美团技术年货 合辑

    Decoupled Head 在 YOLOv6 中,我们采用了解耦检测头(Decoupled Head)结构,并对其进行了 精简设计。原始 YOLOv5 的检测头是通过分类和回归分支融合共享的方式来实现的, 而 YOLOX 的检测头则是将分类和回归分支进行解耦,同时新增了两个额外的 3x3 的卷积层,虽然提升了检测精度,但一定程度上增加了网络延时。 因此,我们对解耦头进行了精简设计,同时综合考虑到相关算子表征能力和硬件上计 1.3% AP。 SIoU 边界框回归损失 为了进一步提升回归精度,YOLOv6 采用了 SIoU[9] 边界框回归损失函数来监督网络 的学习。目标检测网络的训练一般需要至少定义两个损失函数:分类损失和边界框回 归损失,而损失函数的定义往往对检测精度以及训练速度产生较大的影响。 近年来,常用的边界框回归损失包括 IoU、GIoU、CIoU、DIoU loss 等等,这些损 失函数通过考 7.4%,在实际工程中基本不可用。而 YOLOv6s_repopt 网络的量化模型精度为 40.9%,精度损失仅为 1.5%,相比原版 模型有了极大的改善。 表 1 使用 RepOpt 在标准分类和检测任务上的 INT8 精度提升 2.1.3 RepOpt 版本的 QAT 此外,使用 RepOpt 结构解决了原本的 RepVGG 网络无法直接使用现有量化感知训 练的问题。对于结构重参数化的
    0 码力 | 1356 页 | 45.90 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    词汇表征和文本数据处理 02 词嵌入 05 GPT 3 1.词汇表征 01 词汇表征和文本数据处理 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 4 1.词汇表征和文本数据处理 5 1.词汇表征和文本数据处理 6 1.词汇表征和文本数据处理 7 1.词汇表征和文本数据处理 8 2 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 9 2.词嵌入 “Sally Johnson is an orange farmer.” “Robert Lin is an apple farmer.” 10 2.词嵌入 如何用词嵌入做迁移学习的步骤。 第一步,先从大量的文本集中学习词嵌入。 第二步,你可以用这些词嵌入模型把它迁移到你的新的只有少量标注训练集的任 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。 3.滑动窗口为我们的模型生成训练样本 16 3.Word2Vec (下图左边为CBOW,右边为Skip-Gram)
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 《Java 应用与开发》课程讲义 - 王晓东

    . . . 98 9.4.1 标准输入/输出概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.4.2 标准输入/输出的分类 . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.4.3 读取控制台输入的传统方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 10 集合与映射 111 10.1 集合概念及分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.1.1 集合和数组 . . . . . . . 150 12.1 异常的概念及分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 12.1.1 什么是异常 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 12.1.2 Java 异常分类 . . . . . . . .
    0 码力 | 330 页 | 6.54 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    开发环境安装 1.7 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3.7 优化方法 3.8 手写数字图片识别体验 循环神经网络 11.3 梯度传播 11.4 RNN 层使用方法 11.5 RNN 情感分类问题实战 11.6 梯度弥散和梯度爆炸 11.7 RNN 短时记忆 11.8 LSTM 原理 11.9 LSTM 层使用方法 11.10 GRU 简介 11.11 LSTM/GRU 情感分类问题再战 11.12 预训练的词向量 11.13 参考文献 第 12 章 自编码器 Learning)和强化学习(Reinforcement Learning,简称 RL),如图 1.2 所示。 机器学习 有监督学习 无监督学习 强化学习 图 1.2 机器学习的分类 有监督学习 有监督学习的数据集包含了样本?与样本的标签?,算法模型需要学习到 映射关系??: ? → ?,其中??代表模型函数,?为模型的参数。在训练时,通过计算模型的预 测值??(?)与真实标签
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 739 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 74
前往
页
相关搜索词
华为深度学习文本分类实践李明磊PyTorch入门实战53情感26LRQcon北京2018智能处理技术陈运文动手v2Ubuntu2022美团年货合辑机器课程温州大学12自然语言自然语言嵌入lecturenotesforJavaApplicationandDevelopmentpdf深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩