全连接神经网络实战. pytorch 版
dataloader . dataset ) # 10000 print ( f ” s i z e :{ s i z e }” ) num_batches = len ( dataloader ) print ( f ”num_batches :{ num_batches}” ) test_loss , correct = 0 , 0 with torch . no_grad () : f o r correct += ( pred . argmax (1) == y) . type ( torch . f l o a t ) . sum() . item () test_loss /= num_batches cor rect /= s i z e print ( f ” Test␣ Error : ␣\n␣Accuracy : ␣ {(100∗ cor rec t ) : >0.1 f }%,␣Avg␣0 码力 | 29 页 | 1.40 MB | 1 年前3动手学深度学习 v2.0
Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc']) timer, num_batches = d2l.Timer(), len(train_iter) for epoch in range(num_epochs): # 训练损失之和,训练准确率之和,样本数 metric = d2l metric[2] if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: (continues on next page) 244 6. 卷积神经网络 (continued from previous page) animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc 返回从pos位置开始的长度为num_steps的序列 return corpus[pos: pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): # 在这里,initial_indices包含子序列的随机起始索引 initial_indices_per_batch0 码力 | 797 页 | 29.45 MB | 1 年前3TiDB: HBase分布式事务与SQL实现
7 7: 6: data @ 5 5: Timestamp ● Timestamps in strictly increasing order. ● For efficiency, it batches writes, and "pre-allocates" a whole block of timestamps. ● How many timestamps do you think Google’s0 码力 | 34 页 | 526.15 KB | 1 年前3Krita 5.2 中文手册
but processes multiple values at once. Example: /// Define convenience types to manage vector batches. /// `_impl` is a template parameter that is passed via `xsimd::current_arch` /// by the per-arch cast(data_i >> 24U)); In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath: batch type element type num elements (AVX2) num elements (AVX) num elements (SSE2) convert int_v into float_v back and forth. Arithmetic operations Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Let’s consider example 0 码力 | 1594 页 | 79.20 MB | 1 年前3Krita 5.2 官方文档中文版 2023-12-08A
but processes multiple values at once. Example: ��� Define convenience types to manage vector batches. ��� `_impl` is a template parameter that is passed via `xsimd��current_arch` ��� by the per-arch cast(data_i �� 24U)); In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath: batch type element type num elements (AVX2) num elements (AVX) num elements convert int_v into float_v back and forth. Arithmetic operations Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Letʼs consider example 0 码力 | 1685 页 | 91.87 MB | 1 年前3Krita 5.2 官方文档中文版 2023-12-08A
but processes multiple values at once. Example: /// Define convenience types to manage vector batches. /// `_impl` is a template parameter that is passed via `xsimd::current_arch` /// by the per-arch cast(data_i >> 24U)); In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath: batch type element type num elements (AVX2) num elements (AVX) num elements convert int_v into float_v back and forth. Arithmetic operations Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Let’s consider example 0 码力 | 1562 页 | 79.19 MB | 1 年前3Krita 5.1 官方文档中文版 2023-05-26A
but processes multiple values at once. Example: /// Define convenience types to manage vector batches. /// `_impl` is a template parameter that is passed via `xsimd::current_arch` /// by the per-arch cast(data_i >> 24U)); In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath: batch type element type num elements (AVX2) num elements (AVX) num elements convert int_v into float_v back and forth. Arithmetic operations Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Let’s consider example 0 码力 | 1547 页 | 78.22 MB | 1 年前3Greenplum Database 管理员指南 6.2.1
loops=1) Group Key: customer_id Extra Text: (seg0) 49765 groups total in 32 batches; 1 overflows; 169919 spill groups. (seg0) Hash chain length 2.0 avg, 16 max, using 42789 of loops=1) Group Key: sales.customer_id Extra Text: (seg0) 49765 groups total in 32 batches; 1 overflows; 218258 spill groups. (seg0) Hash chain length 1.7 avg, 12 max, using 38835 of ANALYZE,可以发现哪些算子会 用到溢出文件,使用了多少内存,需要多少内存。例如: . . . Extra Text: (seg0) 49765 groups total in 32 batches; 1 overflows; 218258 spill groups. . . . * (slice2) Executor memory: 2114K bytes avg x0 码力 | 416 页 | 6.08 MB | 1 年前3Apache ShardingSphere v5.5.0 document
Sysbench Test 491 Apache ShardingSphere document Test engine It is used to read test cases in batches and execute and assert test results line by line. The test engine arranges test cases and environments0 码力 | 602 页 | 3.85 MB | 1 年前3FISCO BCOS 2.9.0 中文文档
start index of the receipt to be obtained count: The number of receipts that need to be obtained in batches. When set to -1, return all receipt information in the block compressFlag: Compression flag. When start index of the receipt to be obtained count: The number of receipts that need to be obtained in batches. When set to -1, return all receipt information in the block compressFlag: Compression flag. When subscriptions, querying the topic information subscribed by nodes, and returning transaction receipts in batches, and the RPC interfaces related to node transactions and blocks return transactions and blocks The0 码力 | 2649 页 | 201.08 MB | 1 年前3
共 28 条
- 1
- 2
- 3