积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(11)数据库(11)区块链(10)TiDB(9)综合其他(4)Krita(4)云计算&大数据(2)机器学习(2)Julia(1)数据库中间件(1)

语言

全部中文(简体)(28)

格式

全部PDF文档 PDF(15)其他文档 其他(13)
 
本次搜索耗时 0.257 秒,为您找到相关结果约 28 个.
  • 全部
  • 后端开发
  • 数据库
  • 区块链
  • TiDB
  • 综合其他
  • Krita
  • 云计算&大数据
  • 机器学习
  • Julia
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 全连接神经网络实战. pytorch 版

    dataloader . dataset ) # 10000 print ( f ” s i z e :{ s i z e }” ) num_batches = len ( dataloader ) print ( f ”num_batches :{ num_batches}” ) test_loss , correct = 0 , 0 with torch . no_grad () : f o r correct += ( pred . argmax (1) == y) . type ( torch . f l o a t ) . sum() . item () test_loss /= num_batches cor rect /= s i z e print ( f ” Test␣ Error : ␣\n␣Accuracy : ␣ {(100∗ cor rec t ) : >0.1 f }%,␣Avg␣
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc']) timer, num_batches = d2l.Timer(), len(train_iter) for epoch in range(num_epochs): # 训练损失之和,训练准确率之和,样本数 metric = d2l metric[2] if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: (continues on next page) 244 6. 卷积神经网络 (continued from previous page) animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc 返回从pos位置开始的长度为num_steps的序列 return corpus[pos: pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): # 在这里,initial_indices包含子序列的随机起始索引 initial_indices_per_batch
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 TiDB: HBase分布式事务与SQL实现

    7 7: 6: data @ 5 5: Timestamp ● Timestamps in strictly increasing order. ● For efficiency, it batches writes, and "pre-allocates" a whole block of timestamps. ● How many timestamps do you think Google’s
    0 码力 | 34 页 | 526.15 KB | 1 年前
    3
  • epub文档 Krita 5.2 中文手册

    but processes multiple values at once. Example: /// Define convenience types to manage vector batches. /// `_impl` is a template parameter that is passed via `xsimd::current_arch` /// by the per-arch cast(data_i >> 24U)); In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath: batch type element type num elements (AVX2) num elements (AVX) num elements (SSE2) convert int_v into float_v back and forth. Arithmetic operations Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Let’s consider example
    0 码力 | 1594 页 | 79.20 MB | 1 年前
    3
  • pdf文档 Krita 5.2 官方文档中文版 2023-12-08A

    but processes multiple values at once. Example: ��� Define convenience types to manage vector batches. ��� `_impl` is a template parameter that is passed via `xsimd��current_arch` ��� by the per-arch cast(data_i �� 24U)); In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath: batch type element type num elements (AVX2) num elements (AVX) num elements convert int_v into float_v back and forth. Arithmetic operations Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Letʼs consider example
    0 码力 | 1685 页 | 91.87 MB | 1 年前
    3
  • epub文档 Krita 5.2 官方文档中文版 2023-12-08A

    but processes multiple values at once. Example: /// Define convenience types to manage vector batches. /// `_impl` is a template parameter that is passed via `xsimd::current_arch` /// by the per-arch cast(data_i >> 24U)); In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath: batch type element type num elements (AVX2) num elements (AVX) num elements convert int_v into float_v back and forth. Arithmetic operations Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Let’s consider example
    0 码力 | 1562 页 | 79.19 MB | 1 年前
    3
  • epub文档 Krita 5.1 官方文档中文版 2023-05-26A

    but processes multiple values at once. Example: /// Define convenience types to manage vector batches. /// `_impl` is a template parameter that is passed via `xsimd::current_arch` /// by the per-arch cast(data_i >> 24U)); In Krita we have a set of predefined convenience types for vector batches in KoStreamedMath: batch type element type num elements (AVX2) num elements (AVX) num elements convert int_v into float_v back and forth. Arithmetic operations Arithmetic operations with SIMD batches look exactly the same as if you did them with normal int or float values. Let’s consider example
    0 码力 | 1547 页 | 78.22 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    loops=1) Group Key: customer_id Extra Text: (seg0) 49765 groups total in 32 batches; 1 overflows; 169919 spill groups. (seg0) Hash chain length 2.0 avg, 16 max, using 42789 of loops=1) Group Key: sales.customer_id Extra Text: (seg0) 49765 groups total in 32 batches; 1 overflows; 218258 spill groups. (seg0) Hash chain length 1.7 avg, 12 max, using 38835 of ANALYZE,可以发现哪些算子会 用到溢出文件,使用了多少内存,需要多少内存。例如: . . . Extra Text: (seg0) 49765 groups total in 32 batches; 1 overflows; 218258 spill groups. . . . * (slice2) Executor memory: 2114K bytes avg x
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    Sysbench Test 491 Apache ShardingSphere document Test engine It is used to read test cases in batches and execute and assert test results line by line. The test engine arranges test cases and environments
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • epub文档 FISCO BCOS 2.9.0 中文文档

    start index of the receipt to be obtained count: The number of receipts that need to be obtained in batches. When set to -1, return all receipt information in the block compressFlag: Compression flag. When start index of the receipt to be obtained count: The number of receipts that need to be obtained in batches. When set to -1, return all receipt information in the block compressFlag: Compression flag. When subscriptions, querying the topic information subscribed by nodes, and returning transaction receipts in batches, and the RPC interfaces related to node transactions and blocks return transactions and blocks The
    0 码力 | 2649 页 | 201.08 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
连接神经网络神经网神经网络实战pytorch动手深度学习v2TiDBHBase分布布式分布式事务SQL实现Krita5.2中文手册官方文档文版中文版20231208A5.10526AGreenplumDatabase管理管理员指南ApacheShardingSpherev55.0documentFISCOBCOS2.9
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩