2.4 Go 1.4 runtime
Go 1.4 runtime Gopher China 2015 1. Memory Allocator 2. Garbage Collector 3. Goroutine Scheduler 1. Memory Allocator 内存分配器 base on tcmalloc. 基于成熟方案,性能优秀。随着版本升级, 针对性改进,以期与垃圾回收器更好协作。 核心:自主管理,缓存复用,无锁分配。 阈值触发,并行标记,并发清理。 定期强制回收,释放物理内存。 版本升级,垃圾回收效率总是核心问题。 gogc. 阈值检查,或强制回收。 malloc next_gc 0 gogc runtime.gc() stop start mark sweep stop start mark sweep 0 2 2 1 forcegc 2m 1 mark. 暂停用户逻辑,并行标记。 scheduler thread processor goroutine max. 系统限制,允许调整。 runtime.GOMAXPROCS 调整 P 数量,会导致 G 任务队列重新分布。 M G P scheduler max = 10000 max = 256 runtime/debug.SetMaxThreads 超出限制,会导致进程崩溃。 newproc. 创建新并发任务。0 码力 | 29 页 | 608.57 KB | 1 年前3Rust 异步 Runtime 的兼容层 - 施继成
Rust 异步 Runtime 的兼容层 施继成 @ DatenLord Introduce what’s rust async runtime # Rust async runtime Analyze the reason of runtime isolation # Async runtime binding # Compatible layer 1 Create a wheel 2 3 # Rust async runtime 1 Light-weight task • Language and compiler define tasks • How to run it? • When to run it? • How does it deal with the I/O? Rust async runtime Runtime responsibilities it’s multi-thread model Rust async runtime Available Runtimes • Tokio • Async-std • Smol • Monoio Rust async runtime # Async runtime binding 2 Which runtime to choose ? • More adopters • Rich0 码力 | 22 页 | 957.41 KB | 1 年前3Tracing in TiDB 浅谈全链路监控: 从应用到数据库到 Runtime
浅谈全链路监控: 从应用到数据库到 Runtime 黄东旭, Co-founder & CTO, PingCAP 关于我 黄东旭,联合创始人 & CTO @ PingCAP 做分布式数据库的程序员 ● 现在能写代码的时间是奢侈品 TiDB 的亲爹之一兼首席客服和新功能的第一个用户 ● 冤有头债有主,SQL 慢了来找我。。。 偶尔玩玩音乐 ● 摇滚乐->实验音乐 Go 的粉丝!!!! tool trace go tool trace ● 优点:好用,好看(UI) ● 缺点:性能损耗太大,不能一直开着 Trace in Go runtime ● go tool trace 的原理是? Trace 会 Go Runtime 的代码中打桩收集 CPU time,在 Goroutine 开始执行时记录 start_run_time, 在调度退出执行时记录 end_run_time,累加 goroutine 的 CPU time。 A little bit about Go runtime https://learnku.com/articles/41728 https://github.com/golang/go/blob/ma ster/src/runtime/trace.go hack runtime 的思路: follow the tracing event. PingCAP0 码力 | 39 页 | 3.43 MB | 1 年前3openEuler 21.03 技术白皮书
ecosystem. openEuler is an innovative platform driven by community collaboration. It aims to build a unified and open OS that supports multiple processor architectures, and to advance the hardware and software complete lifecycle management that covers building, verification, and distribution. The build, runtime dependencies, and upstream communities of the open source software form a closed loop, realizing In-depth optimizations for scheduling, I/O, and memory management • Tiered memory expansion etMem: unified management of various memory and storage media, and smooth expansion of system capacity • Live0 码力 | 21 页 | 948.66 KB | 1 年前3Apache ShardingSphere v5.5.0 document
elastic scaling, encryption features & more. The project is committed to providing a multi‐source heterogeneous, enhanced database platform and further building an ecosystem around the upper layer of the platform Apache ShardingSphere, aims at building the standard and ecosystem on the upper layer of the heterogeneous database. It focuses on how to make full and reasonable use of the computing and storage capabilities database proxy, providing a database server that encapsulates database binary protocol to support heterogeneous languages. 1 Apache ShardingSphere document 1.2 Product Features F ea tu re Definition0 码力 | 602 页 | 3.85 MB | 1 年前3Julia 中文文档
. . . . . . . . . . . . . . . . . . . . . . . . . . 1196 92.15printf() and stdio in the Julia runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200 Libuv wrappers for stdio . . a method error, it seems probable that the intention is for x to be local to the for loop. But runtime values and what methods happen to exist cannot be used to determine the scopes of variables. With 者说「world age」。它还允 许仅仅通过其序数值来比较在两个 world 中可用的方法。在上例中,我们看到(方法 newfun 所存在 的)「current world」比局部于任务的「runtime world」大一,后者在 tryeval 开始执行时是固定的。 有时规避这个是必要的(例如,如果你在实现上面的 REPL)。幸运的是这里有个简单地解决方法:使 用Base.invokelatest调用函数:0 码力 | 1238 页 | 4.59 MB | 1 年前3Blender v4.1 Manual
You can also edit videos. It is well suited to individuals and small studios who benefit from its unified pipeline and responsive development process. Being a cross-platform application, Blender runs on Introduction Language Input File and Paths Save & Load Configuring Peripherals Displays Input Devices Head-Mounted Displays (Virtual Reality) Defaults Import Existing Settings Create New Settings Saving span multiple monitors. Example of Blender’s multi-monitor support. Input Devices Blender supports various types of input devices: Keyboard (recommended: keyboard with numeric keypad, English layout works0 码力 | 6263 页 | 303.71 MB | 1 年前3openEuler 21.09 技术白皮书
released. This premium version is designed to supercharge all scenarios, including edge and embedded devices. It enhances server and cloud computing features, and incorporates key technologies including cloud-native developers who plan to enhance scenario-specific capabilities. By creating a unified OS that supports multiple devices, openEuler hopes to enable a single application development for all scenarios and verifies its source code by comparing it to that of the upstream communities. The build, runtime dependencies, and upstream communities of the open source software form a closed loop, realizing0 码力 | 36 页 | 3.40 MB | 1 年前32022年美团技术年货 合辑
[10] He Y, Lin J, Liu Z, et al. Amc: Automl for model compression and acceleration on mobile devices[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 784-800. [11] Yang Shichao Liu, Wen Zhang, and Yanqing Niu. 2020. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction. BMC genomics 21, 13 (2020), 1–12. [21] 的图神经网络框架至少具备以下特点。 (1)完善支持当前流行的图神经网络模型。 从图本身的类型来看,图神经网络模型可以分为同质图 (Homogeneous Graph)、 异质图 (Heterogeneous Graph)、动态图 (Dynamic Graph) 等类型。从训练方式 来看,又可以分为全图消息传递 [4] 和基于子图采样的消息传递 [8] 等类型。从推理方 式来看,还可以分为直推式和归纳式0 码力 | 1356 页 | 45.90 MB | 1 年前3Kotlin 1.9.10 官方文档 中文版
projects. With Kotlin/Wasm, you can create applications that run on different environments and devices supporting WebAssembly and meeting Kotlin's requirements. Learn more about Kotlin/Wasm in this Kotlin 1.9.0 introduces the preview of a custom memory allocator. Its allocation system improves the runtime performance of the Kotlin/Native memory manager. The current object allocation system in Kotlin/Native reference to the Objective-C object. When the Kotlin object gets deallocated, the Kotlin/Native runtime calls the objc_release function that releases that Objective-C reference. Previously, the Kotlin/Native0 码力 | 3753 页 | 29.69 MB | 1 年前3
共 459 条
- 1
- 2
- 3
- 4
- 5
- 6
- 46