积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(828)Python(274)Java(214)Spring(214)云计算&大数据(192)综合其他(191)Weblate(122)数据库(94)Julia(87)Scrapy(62)

语言

全部英语(1135)中文(简体)(157)中文(繁体)(21)韩语(9)日语(8)西班牙语(7)德语(6)俄语(6)英语(5)

格式

全部PDF文档 PDF(1016)其他文档 其他(344)DOC文档 DOC(3)TXT文档 TXT(3)PPT文档 PPT(3)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • Java
  • Spring
  • 云计算&大数据
  • 综合其他
  • Weblate
  • 数据库
  • Julia
  • Scrapy
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 韩语
  • 日语
  • 西班牙语
  • 德语
  • 俄语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • TXT文档 TXT
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 How Deep Do You Go?

    How Deep Do You Go? Contributing to the os Package Oliver Stenbom July 25th Gophercon 2019 On an unsuspecting Monday last July, the team I was working at the time received a bug report. The report
    0 码力 | 70 页 | 14.56 MB | 1 年前
    3
  • pdf文档 VMware SIG Deep Dive into Kubernetes Scheduling

    VMware SIG Deep Dive into Kubernetes Scheduling Performance and high availability options for vSphere Steve Wong, Michael Gasch KubeCon North America December 13, 2018 2 Open Source Community Relations
    0 码力 | 28 页 | 1.85 MB | 1 年前
    3
  • pdf文档 Prometheus Deep Dive - Monitoring. At scale.

    Prometheus Deep Dive Monitoring. At scale. Richard Hartmann & Frederic Branczyk @TwitchiH & @fredbrancz 2018-12-12 Richard Hartmann & Frederic Branczyk @TwitchiH & @fredbrancz Prometheus Deep Dive Introduction lead Prometheus team member Richard Hartmann & Frederic Branczyk @TwitchiH & @fredbrancz Prometheus Deep Dive Introduction Intro 2.0 to 2.2.1 2.4 - 2.6 Beyond Outro Show of hands Who has heard of Prometheus Prometheus in production? Richard Hartmann & Frederic Branczyk @TwitchiH & @fredbrancz Prometheus Deep Dive Introduction Intro 2.0 to 2.2.1 2.4 - 2.6 Beyond Outro Prometheus 101 Inspired by Google’s
    0 码力 | 34 页 | 370.20 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    about a variety of techniques in the last few chapters to improve efficiency and boost the quality of deep learning models. These techniques are just a small subset of the available techniques. It is often of these four options to make an informed decision. Blessed with a large research community, the deep learning field is growing at a rapid pace. Over the past few years, we have seen newer architectures the performance benchmarks higher. Figure 7-1 shows some of the choices we face when working on a deep learning problem in the vision domain for instance. Some of these choices are boolean, others have
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Introduction to Efficient Deep Learning Welcome to the book! This chapter is a preview of what to expect in the book. We start off by providing an overview of the state of deep learning, its applications applications, and rapid growth. We will establish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques that even if you just read this chapter, you would be able to appreciate why we need efficiency in deep learning models today, how to think about it in terms of metrics that you care about, and finally
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 8 4 Deep Learning with Python 费良宏

    2016的目标:Web爬虫+深度学习+自然语言处理 = ? Microso� Apple AWS 今年最激动人心的事件? 2016.1.28 “Mastering the game of Go with deep neural networks and tree search” 今年最激动人心的事件? 2016年3月Alphago 4:1 击败李世石九段 人工智能 VS. 机器学习 VS. 深度学习 Torch (NYU,2002), Facebook AI, Google Deepmind Theano (University of Montreal, ~2010), 学院派 Kersa, “Deep Learning library for Theano and TensorFlow” Caffe (Berkeley),卷积神经网络,贾扬清 TensorFlow (Google) Spark
    0 码力 | 49 页 | 9.06 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    footprint or quality, we should consider employing suitable efficient architectures. The progress of deep learning is characterized by the phases of architectural breakthroughs to improve on previous results enjoy and so on), without the need of knowing all the encyclopedic data about them. When working with deep learning models and inputs such as text, which are not in numerical format, having an algorithmic inputs should have a larger distance between each other. Embeddings form a crucial part of modern deep-learning models, and we are excited to explain how they work. In the following section we will explain
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with is because, firstly, regularization and dropout are fairly straight-forward to enable in any modern deep learning framework. Secondly, data augmentation and distillation can bring significant efficiency Now, let’s dive into these learning techniques to understand what they are and how to employ them in deep learning workflows. We start with data augmentation in the next section. Data Augmentation Data
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep learning efficiency. Now, we will elaborate on one of those ideas, the compression techniques. Compression a gentle introduction to the idea of compression. Details of quantization and its applications in deep learning follow right after. The quantization section delves into the implementation details using compression might lead to degradation in quality. In our case, we are concerned about compressing the deep learning models. What do we really mean by compressing though? As mentioned in chapter 1, we can break
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • ppt文档 Harbor Deep Dive - Open source trusted cloud native registry

    Harbor Deep Dive Open source trusted cloud native registry Henry Zhang, Chief Architect, VMware R&D China Steven Zou, Staff Engineer, VMware R&D China Nov. 2018 goharbor.io Initiated by VMware LDAP/Active Directory Supporting services Harbor Packaging Docker Kubernetes Cloud Foundry Deep dive Harbor through panel discussion! Q1: What other features harbor should provide? Q2: How does
    0 码力 | 15 页 | 8.40 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
GoVMwareSIGDeepDiveintoKubernetesSchedulingPrometheusMonitoringAtscaleEfficientLearningBookEDLChapterAutomationIntroductionwithPython费良宏ArchitecturesTechniquesCompressionHarbor
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩