积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(111)C++(63)Conan(63)Python(43)云计算&大数据(34)数据库(33)Pandas(32)Scrapy(25)TiDB(24)数据库中间件(8)

语言

全部英语(160)中文(简体)(21)

格式

全部PDF文档 PDF(168)其他文档 其他(13)
 
本次搜索耗时 0.398 秒,为您找到相关结果约 181 个.
  • 全部
  • 后端开发
  • C++
  • Conan
  • Python
  • 云计算&大数据
  • 数据库
  • Pandas
  • Scrapy
  • TiDB
  • 数据库中间件
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 Scrapy 0.20 Documentation

    index modules | next | Scrapy 0.20.2 documentation » Scrapy 0.20 documentation This documentation contains everything you need to know about Scrapy. Getting help Having trouble? We’d like to help! support? Scrapy is supported under Python 2.7 only. Python 2.6 support was dropped starting at Scrapy 0.20. Does Scrapy work with Python 3? No, but there are plans to support Python 3.3+. At the moment,
    0 码力 | 276 页 | 564.53 KB | 1 年前
    3
  • pdf文档 Scrapy 0.20 Documentation

    support? Scrapy is supported under Python 2.7 only. Python 2.6 support was dropped starting at Scrapy 0.20. 5.1.3 Does Scrapy work with Python 3? No, but there are plans to support Python 3.3+. At the moment
    0 码力 | 197 页 | 917.28 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    improvements of note in each release. 1.1 v0.20.3 (July 7, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes and bug fixes. We recommend that all users upgrade downstream packages’ tests suites (GH16680) 1.1.1.1 Conversion • Bug in pickle compat prior to the v0.20.x series, when UTC is a timezone in a Series/DataFrame/Index (GH16608) • Bug in Series construction with categorical data (GH16793) 1.2 v0.20.2 (June 4, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes, bug fixes and performance improvements. We recommend
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.2

    improvements of note in each release. 1.1 v0.20.2 (June 4, 2017) This is a minor bug-fix release in the 0.20.x series and includes some small regression fixes, bug fixes and performance improvements. We recommend grouping objects as the keys. For example, consider the following DataFrame: Note: New in version 0.20. A string passed to groupby may refer to either a column or an index level. If a string matches both doo -1.220674 baz bee -0.608004 foo bop 1.023898 qux bop 0.000895 dtype: float64 New in version 0.20. Index level names may be supplied as keys. In [37]: s.groupby(['first', 'second']).sum() Out[37]:
    0 码力 | 1907 页 | 7.83 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [598]: df.ix[1978] Out[598]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.3 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [598]: df.ix[1978] Out[598]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.3 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[174]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 4.1. IO tools (text, CSV, HDF5, . . . ) 243 pandas: powerful read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) Dtype specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 40 2.70 I 6.40 1.20 In [614]: df.ix[1978] Out[614]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 15.2.4 Automatically “sniffing” the delimiter read_csv is capable of inferring zit xit 0 1977 A 1.2 0.60 1 1977 B 1.5 0.50 2 1977 C 1.7 0.80 3 1978 A 0.2 0.06 4 1978 B 0.7 0.20 5 1978 C 0.8 0.30 6 1978 D 0.9 0.50 By specifiying a chunksize to read_csv or read_table, the return
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[174]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 4.1. IO tools (text, CSV, HDF5, . . . ) 243 pandas: powerful read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) Dtype specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[169]: ˓→ zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90 Reading columns with a MultiIndex By specifying list of row read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun}) dtype Specifications New in version 0.20. As an alternative to converters, the type for an entire column can be specified using the dtype
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
共 181 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 19
前往
页
相关搜索词
Scrapy0.20DocumentationpandaspowerfulPythondataanalysistoolkit0.70.250.24
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩