亚马逊AWSAI Services Overview
© 2016, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 张孝峰 AWS解决方案架构师 March 17, 2017 Amazon 的人工智能&深度学习 围绕数据的“飞轮” 机器学习 深度学习 人工智能 更多的用户 更好的产品 更多的数据 更好的分析 对象存储 数据库 数据仓库 数据流分析 商业智能 One skill for Alexa.” “As a heavy user of AWS, Amazon Lex’s seamless integration with other AWS services like AWS Lambda and AWS DynamoDB is really appealing.” Amazon Rekognition 基于深度学习的图像识别服务 目标和场景检测0 码力 | 56 页 | 4.97 MB | 1 年前3Machine Learning
Machine Learning Lecture 10: Neural Networks and Deep Learning Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Deep Feedforward f(x) is usually a highly non-linear function • Feedforward networks are of extreme importance to machine learning practioners • The conventional neural networks (CNN) used for object recognition from photos0 码力 | 19 页 | 944.40 KB | 1 年前3Apache RocketMQ on Amazon Web Services
Page 1 of 18 Apache RocketMQ on Amazon Web Services 部署手册 顾明 版本:v1.0.0 最后更新时间: 2021 年 01 月 Copyright (c) 2021 by Amazon.com, Inc. or its affiliates. Page 外的互联网公司。针对 AMAZON WEB SERVICES 客户需要在 AMAZON WEB SERVICES 上 使用 RocketMQ 的需求,我们开发了一键部署的方案,帮助客户快速的在自己的账号 部署一个基于 EC2 的高可用的 RocketMQ 集群。 架构 AMAZON CloudFormation 提供了一种创建和管理相关 AMAZON WEB SERVICES 资源的简 便方法,并通过有序 到已有 VPC 中,将跳过 (不创建) 带有星号(*)的组件,并提⽰ 您目前现有的配置。 按照默认 RocketMQ 的部署参数部署完成后,该方案会在用户的 AMAZON WEB SERVICES account 下部署如下的一个架构,包含两个 Nameserver 互为备份,三个 Broker Instance 每个 Broker Instance 上面启动三个 Broker 实例,每个0 码力 | 18 页 | 1.55 MB | 1 年前3Back to Basics: The Abstract Machine
Back to Basics: The Abstract Machine Bob Steagall CppCon 2020 K E W B C O M P U T I N GCopyright © 2020 Bob Steagall K E W B C O M P U T I N G Overview/Goals • Describe abstract machines in general general • Describe the C++ abstract machine specifically • Language goals that drive its design • Role in program development and execution • Important definitions and characteristics • Important components components of the abstract machine, and their relationships • Provide a useful overview of the C++ abstract machine CppCon 2020 - The Abstract Machine 2Copyright © 2020 Bob Steagall K E W B C O M P U T I0 码力 | 91 页 | 538.90 KB | 5 月前3Machine Learning Pytorch Tutorial
Machine Learning Pytorch Tutorial TA : 曾元(Yuan Tseng) 2022.02.18 Outline ● Background: Prerequisites & What is Pytorch? ● Training & Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors year ■ ref: link1, link2 Some knowledge of NumPy will also be useful! What is PyTorch? ● An machine learning framework in Python. ● Two main features: ○ N-dimensional Tensor computation (like NumPy) NLP & speech) ○ ESPnet (speech recognition, translation, synthesis, ...) ○ Most implementations of recent deep learning papers ○ ... References ● Machine Learning 2021 Spring Pytorch Tutorial ● Official0 码力 | 48 页 | 584.86 KB | 1 年前3Debugging the BPF Virtual Machine
Debugging the BPF Virtual Machine Lorenzo Fontana October 28, 2020 ● Debugging is useful to understand how things work ● Sometimes, eBPF programs can’t even load ● I couldn’t find good resources on this this, so, here I am ● I break lots of eBPF programs ● The BPF Virtual machine is not easy to understand Why ? The BPF subsystem lives in the kernel AND The kernel can be debugged using gdb The0 码力 | 10 页 | 233.09 KB | 1 年前3Services Web
09.Services Web 19 décembre 2023 Développement web il3 Services web HE-Arc (DGR) 2022 Applications distribuées • Motivation : répartir l’exécution sur plusieurs machines – Principe : Les composants/services composants/services communiquent par le réseau – Problèmes : Hétérogénéité systèmes, langages, … – Solution : Protocole générique, abstraction différences – Exemples : RPC, RMI (java), CORBA, DCOM (MS) • Utiliser org/wiki/Architecture_orient%C3%A9e_services 1 Service web • 2 visions : – Utiliser les technos web pour développer des applis distribuées – Accès pour une application aux services offerts aux humains • Service0 码力 | 6 页 | 47.90 KB | 1 年前3Lecture Notes on Support Vector Machine
Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ωT x + b = 0 (1) where ω ∈ Rn defined as γ = min i γ(i) (6) 1 ? ? ! ? ! Figure 1: Margin and hyperplane. 2 Support Vector Machine 2.1 Formulation The hyperplane actually serves as a decision boundary to differentiating positive we can construct a infinite number of hyperplanes, but which one is the best? Supported Vector Machine (SVM) answers the above question by maximizing γ (see Eq. (6)) as follows max γ,ω,b γ s.t. y(i)(ωT0 码力 | 18 页 | 509.37 KB | 1 年前3Lecture 6: Support Vector Machine
Lecture 6: Support Vector Machine Feng Li Shandong University fli@sdu.edu.cn December 28, 2021 Feng Li (SDU) SVM December 28, 2021 1 / 82 Outline 1 SVM: A Primal Form 2 Convex Optimization Review (b < 0 means in opposite direction) Feng Li (SDU) SVM December 28, 2021 3 / 82 Support Vector Machine A hyperplane based linear classifier defined by ω and b Prediction rule: y = sign(ωTx + b) Given: " such that min& ' & !() & + " = 1 Feng Li (SDU) SVM December 28, 2021 14 / 82 Support Vector Machine (Primal Form) Maximizing 1/∥ω∥ is equivalent to minimizing ∥ω∥2 = ωTω min ω,b ωTω s.t. y(i)(ωTx(i)0 码力 | 82 页 | 773.97 KB | 1 年前3Machine Learning with ClickHouse
Machine Learning with ClickHouse Nikolai Kochetov, ClickHouse developer Experimental dataset NYC Taxi and Uber Trips › Where to download: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page0 码力 | 64 页 | 1.38 MB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100