积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(135)OpenShift(54)机器学习(45)Kubernetes(12)VMWare(5)Service Mesh(4)Hadoop(3)云原生CNCF(3)Docker(2)rancher(2)

语言

全部中文(简体)(131)英语(3)中文(简体)(1)

格式

全部PDF文档 PDF(134)DOC文档 DOC(1)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 135 个.
  • 全部
  • 云计算&大数据
  • OpenShift
  • 机器学习
  • Kubernetes
  • VMWare
  • Service Mesh
  • Hadoop
  • 云原生CNCF
  • Docker
  • rancher
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Qcon北京2018-《深度学习在视频搜索领域的实践》-刘尚堃pdf

    ��������������� ������� 目录 1、视频搜索的挑战 %、深度学m在视频内容理解h的应用——召回 3、深度学m在语k搜索h的应用——语k表征 4、深度学m在排序h的应用——g性化表征 视频搜索的挑战 1�����/���——���� 2����/�����——���� 3������——������ ��������������� 1������������ 1������������ 2�����/���� 3������ 内容理解——基q视频内容的召回 ������������ 1����� 2���/���� 3���/���� 4���/OCR/ASR��NLP�� �������� ����������� 内容理解——自动分类技术 • 目的a输入v意视频,通过内容理解的方法对视 频进行类目和标签预测 • 方法a采用1::+8ST9的UHSuHPFH-VQ- 方法a采用1::+8ST9的UHSuHPFH-VQ- UHSuHPFH RTHGLFVLQP的方法 • 效果a • 基类目平均准确率.8(% ������ pu/行i检测技术 • 目的a给定e定长视频,定x感兴趣行i发生的时间段并给出 对应行i类标 • 方法a采取1QPvQNuVLQP 32+5DVHG >HFuTTHPV APLVU 5>A) 算法,结合SLPgNH ShQV 2HVHFVQT SS2)框架实现行i检测功
    0 码力 | 24 页 | 9.60 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    深度学习下的图像视频处理技术 沈小勇 优图X-Lab视觉AI负责人 专家研究员 自我介绍 自我介绍 2006.9 – 2012.7 浙江大学数学系本科硕士 2012.8 – 2016.6 香港中文大学博士 2016.6 – 2017.5 香港中文大学 Research Fellow 2017.5 – 现在 腾讯优图X-Lab 视觉AI负责人,专家研究员 个人主页:http://xiaoyongshen Scholar: https://scholar.google.com/citations?user=P eMuphgAAAAJ&hl=en 看得更清,看得更懂 目录 1. 夜景增强 2. 图像视频去模糊 3. 视频超分辨率 1. 夜景图像增强 Taking photos is easy Amateur photographers typically create underexposed photos More Results Input iPhone Lightroom Our result More Results Input iPhone Lightroom Our result 2. 视频超分辨率 Old and Fundamental Several decades ago [Huang et al, 1984] → near recent Many Applications HD
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 基于Consul的多Beats接入管控与多ES搜索编排

    1 梁成 腾讯云, barryliang@tencent.com 基于Consul的多Beats接入 管控与多ES搜索编排 2 拥抱开源、释放云原生的力量 • 背景与挑战 • 多Beats/Logstash接入管控 • 多ES搜索编排系统 • 日志AIOps探索 3 背景与挑战 产品数量 人员规模 主机规模 100+ 1000 + 10000 + 如何降低日志接入门槛 性 15 多ES搜索编排系统 提供多ES多索引搜索编排功能,帮助 业务快速定位异常 16 故障定位遇到的困扰 客服 产品 运维 研发 多es切换 系统切换 采集 高负载 合作伙伴 OthersDB 17 案例:非APM场景下多组件日志搜索探索 ES/ OtherDB 多集群 多索引 上下文 搜索 Kibana 导航 搜索编 排 异常知 识库
    0 码力 | 23 页 | 6.65 MB | 1 年前
    3
  • pdf文档 深度学习在百度搜索中的工程实践-百度-曹皓

    0 码力 | 40 页 | 29.46 MB | 1 年前
    3
  • pdf文档 QCon2018北京-基于深度学习的视频结构化实践-姚唐仁

    《基于深度学习的视频结构化实践》 七牛云 AI实验室首席架构师/姚唐仁� • 围绕海量数据提供创新的云服务,帮助客户缩短想法到产品的距离 • 创立6年,每年超过300%的业绩增长 • 已完成5轮融资,累计超过20亿 • 长期服务70多万企业用户和开发者 • 文件数超过2000亿,每日新增文件20亿 • 覆盖全球300个节点 • 覆盖金融、公安、广电媒体、互联网等行业 �������2007������������� 视觉-最重要的信息感知 2017中国网络视频用户情况 ����2017������������� 传统视频摘要 vs AI视频结构化 内容不完整 依赖经验 实时性差 时效性差 识别范围广 效率高 可迭代 创新基础 传统手工摘要 AI视频结构化 视频结构化场景 视频分解 基础模型要素 ��1�01:02:03-01:10:05� ��1�01:02:03-01:10:05� ��1����� �� �� �� ���XX�� ���� �� ��(��)� 视频描述-标签 视频处理 Frames Flows Audio …….� Others 节省了80%的人力成本,缩短了50%的实现周期 七牛云深度学习平台 1 ��P ���� 2 ���� 3 ����� 4 ���� ����� 5 1 ��P
    0 码力 | 39 页 | 38.01 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 3.11 CLI 参考

    37 37 OpenShift Container Platform 3.11 CLI 参考 参考 2 7.3. 安装插件 7.3.1. Plug-in Loader 7.3.1.1. 搜索顺序 7.4. 编写插件 7.4.1. plugin.yaml Descriptor 7.4.2. 建议的目录结构 7.4.3. 访问运行时属性 37 38 38 38 39 39 Enterprise 订阅才能访问下载页面: 从红帽客户门户网站下载 CLI 另外,如果集群管理员启用了它,您可以在 web 控制台的 About 页面中下载并解压缩 CLI。 教程 教程视频 视频: : 以下视频将引导您完成此过程: 单击此处观看 然后,使用 ZIP 程序解压存档,并将 oc 二进制文件移到 PATH 的目录中。要查看您的 PATH,请打开命 令提示并运行: 2.3.2. 对于 Enterprise 订阅才能访问下载页面: 从红帽客户门户网站下载 CLI 另外,如果集群管理员启用了它,您可以在 web 控制台的 About 页面中下载并解压缩 CLI。 教程 教程视频 视频: : 以下视频将引导您完成此过程: 单击此处观看 C:\> path 第 第 2 章 章 CLI 入 入门 门 7 1 然后,解包存档,并将 oc 二进制文件移到 PATH 的目录中。要查看您的
    0 码力 | 45 页 | 737.95 KB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景  OCR识别  人脸核身  智能风控  自动驾驶  语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 标准化  标准化模型库  标准化解决方案 1.方案复杂 图像 搜索 推荐 语音 视频理解 NLP 广告 CNN RNN GNN MLP Tensorflow PyTorch Parameter Server MPI TreeModel SQL MapReduce Blink  场景丰富: 图像/视频/推荐/搜索  大数据+大模型: Model Zoo  跨场景+跨模态 RCNNHead MaskHead SeqHead Vit Swin Retrieval Image Generation Video Caption EasyVision: 图像视频算法库 Bert TextInput Optim izer 性能优越:  分布式存储  分布式查询 功能完备:  GSL/负采样  主流图算法  异构图 (user/item/attribute)
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    尽管每天都有深度学习相关算法论文的发布,但是作者相信,深度学习的核心思想和基 础理论是共通的。本书已尽可能地涵盖其中基础、主流并且前沿的算法知识,但是仍然有很 多算法无法涵盖,读者学习完本书后,可以自行搜索相关方向的研究论文或资料,进一步学 习。 深度学习是一个非常前沿和广袤的研究领域,鲜有人士能够对每一个研究方向都有深刻 的理解。作者自认才疏学浅,略懂皮毛,同时也限于时间和篇幅关系,难免出现理解偏差甚 https://item.jd.com/12954866.html ❑ 联系邮箱(一般问题建议 Github issues 交流):liangqu.long AT gmail.com ❑ 配套视频课程(收费,提供答疑等全服务,比较适合初学者): 深度学习与 TensorFlow 入门实战 深度学习与 PyTorch 入门实战 https://study.163.com/course/courseMai 和 Google TPU 等并行加速芯片训练模型参数。如围棋程序 AlphaGo Zero 在 64 块 GPU 上从 零开始训练了 40 天才得以超越所有的 AlphaGo 历史版本;自动网络结构搜索算法使用了 800 块 GPU 同时训练才能优化出较好的网络结构。 目前普通消费者能够使用的深度学习加速硬件设备主要来自 NVIDIA 的 GPU 显卡, 图 1.12 例举了从 2008 年到
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 第29 期| 2023 年9 月- 技术雷达

    Inc. All Rights Reserved. 5 贡献者 技术顾问委员会(TAB)由 Thoughtworks 的 22 名高级技术专家组成。 TAB 每年召开两次面对面会议,每两周召 开一次视频会议。其主要职责是为 Thoughtworks 的首席技术官 Rachel Laycock 和名誉首席技术官 Rebecca Parsons 提供咨询建议。 作为一个综合型组织,TAB 能够审视影响 OpenAI 的 ChatGPT,Google Bard,Meta 的 LLaMA 以及亚马逊的 Bedrock 等)在我们的讨论中占据重要地位。更广泛来说,大语言模型可以应用于从 内容生成(文本、图片和视频)、代码生成到总结概述和翻译等各种问题。通过自然语言的抽象层,这些大模型 成为了强大的工具库,被诸多信息工作者广泛使用。我们讨论了大语言模型的各个方面,包括自托管式大语言 模型,相较云托管的大语 是一种结合预训练参数和非参数记忆的文本生成技术。它使你能够通过你的领域内特有 的包含上下文的知识,来强化预训练模型中的现有知识。使用 RAG,你会先从非参数记忆中去检索相关文档集 (一般是通过在向量数据库中的相似性搜索),再使用 LLM 中的参数记忆生成与检索出的文档一致的输出。我们 发现 RAG 对各种需要大量知识的 NLP 任务十分有用,包括问答,总结和故事生成。 技术 © Thoughtworks, Inc
    0 码力 | 43 页 | 2.76 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . 23 3.2.7.4 视觉问答模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.7.5 视频问答模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Keras FAQ: 常见问题解答 . . . . 这是可行的,并且返回上面定义的 10-way softmax。 y = model(x) 快速开始 18 这种方式能允许我们快速创建可以处理序列输入的模型。只需一行代码,你就将图像分类 模型转换为视频分类模型。 from keras.layers import TimeDistributed # 输入张量是 20 个时间步的序列,每一个时间为一个 784 维的向量 input_sequences question_input], outputs=output) # 下一步就是在真实数据上训练模型。 3.2.7.5 视频问答模型 现在我们已经训练了图像问答模型,我们可以很快地将它转换为视频问答模型。在适当的训练 下,你可以给它展示一小段视频(例如 100 帧的人体动作),然后问它一个关于这段视频的问题 (例如,「这个人在做什么运动?」-> 「足球」)。 from keras.layers import
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 135 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 14
前往
页
相关搜索词
Qcon北京2018深度学习视频搜索领域实践刘尚pdf图像处理技术沈小勇基于ConsulBeats接入管控ES编排百度工程曹皓QCon2018结构结构化姚唐仁OpenShiftContainerPlatform3.11CLI参考阿里云上建模程孟力PyTorch深度学习292023雷达KerasPython
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩