积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(45)机器学习(45)

语言

全部中文(简体)(44)英语(1)

格式

全部PDF文档 PDF(45)
 
本次搜索耗时 0.067 秒,为您找到相关结果约 45 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Qcon北京2018-《深度学习在视频搜索领域的实践》-刘尚堃pdf

    ��������������� ������� 目录 1、视频搜索的挑战 %、深度学m在视频内容理解h的应用——召回 3、深度学m在语k搜索h的应用——语k表征 4、深度学m在排序h的应用——g性化表征 视频搜索的挑战 1�����/���——���� 2����/�����——���� 3������——������ ��������������� 1������������ 1������������ 2�����/���� 3������ 内容理解——基q视频内容的召回 ������������ 1����� 2���/���� 3���/���� 4���/OCR/ASR��NLP�� �������� ����������� 内容理解——自动分类技术 • 目的a输入v意视频,通过内容理解的方法对视 频进行类目和标签预测 • 方法a采用1::+8ST9的UHSuHPFH-VQ- 方法a采用1::+8ST9的UHSuHPFH-VQ- UHSuHPFH RTHGLFVLQP的方法 • 效果a • 基类目平均准确率.8(% ������ pu/行i检测技术 • 目的a给定e定长视频,定x感兴趣行i发生的时间段并给出 对应行i类标 • 方法a采取1QPvQNuVLQP 32+5DVHG >HFuTTHPV APLVU 5>A) 算法,结合SLPgNH ShQV 2HVHFVQT SS2)框架实现行i检测功
    0 码力 | 24 页 | 9.60 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    深度学习下的图像视频处理技术 沈小勇 优图X-Lab视觉AI负责人 专家研究员 自我介绍 自我介绍 2006.9 – 2012.7 浙江大学数学系本科硕士 2012.8 – 2016.6 香港中文大学博士 2016.6 – 2017.5 香港中文大学 Research Fellow 2017.5 – 现在 腾讯优图X-Lab 视觉AI负责人,专家研究员 个人主页:http://xiaoyongshen Scholar: https://scholar.google.com/citations?user=P eMuphgAAAAJ&hl=en 看得更清,看得更懂 目录 1. 夜景增强 2. 图像视频去模糊 3. 视频超分辨率 1. 夜景图像增强 Taking photos is easy Amateur photographers typically create underexposed photos More Results Input iPhone Lightroom Our result More Results Input iPhone Lightroom Our result 2. 视频超分辨率 Old and Fundamental Several decades ago [Huang et al, 1984] → near recent Many Applications HD
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 深度学习在百度搜索中的工程实践-百度-曹皓

    0 码力 | 40 页 | 29.46 MB | 1 年前
    3
  • pdf文档 QCon2018北京-基于深度学习的视频结构化实践-姚唐仁

    《基于深度学习的视频结构化实践》 七牛云 AI实验室首席架构师/姚唐仁� • 围绕海量数据提供创新的云服务,帮助客户缩短想法到产品的距离 • 创立6年,每年超过300%的业绩增长 • 已完成5轮融资,累计超过20亿 • 长期服务70多万企业用户和开发者 • 文件数超过2000亿,每日新增文件20亿 • 覆盖全球300个节点 • 覆盖金融、公安、广电媒体、互联网等行业 �������2007������������� 视觉-最重要的信息感知 2017中国网络视频用户情况 ����2017������������� 传统视频摘要 vs AI视频结构化 内容不完整 依赖经验 实时性差 时效性差 识别范围广 效率高 可迭代 创新基础 传统手工摘要 AI视频结构化 视频结构化场景 视频分解 基础模型要素 ��1�01:02:03-01:10:05� ��1�01:02:03-01:10:05� ��1����� �� �� �� ���XX�� ���� �� ��(��)� 视频描述-标签 视频处理 Frames Flows Audio …….� Others 节省了80%的人力成本,缩短了50%的实现周期 七牛云深度学习平台 1 ��P ���� 2 ���� 3 ����� 4 ���� ����� 5 1 ��P
    0 码力 | 39 页 | 38.01 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    阿里云深度学习实践 程孟力 花名: 杨熙 阿里巴巴-计算平台-PAI 个性化推荐 视频理解 智能对话系统 图像检索 更多场景  OCR识别  人脸核身  智能风控  自动驾驶  语音助手 • • • 优势: 效果 显著超越 传统模型(线性层模型 / 树模型 / SVM模型 / … ) 深度学习应用场景 沙漠 湖泊 旅行 深度学习应用主要的挑战: 2.模型效果优 化困难 标准化  标准化模型库  标准化解决方案 1.方案复杂 图像 搜索 推荐 语音 视频理解 NLP 广告 CNN RNN GNN MLP Tensorflow PyTorch Parameter Server MPI TreeModel SQL MapReduce Blink  场景丰富: 图像/视频/推荐/搜索  大数据+大模型: Model Zoo  跨场景+跨模态 RCNNHead MaskHead SeqHead Vit Swin Retrieval Image Generation Video Caption EasyVision: 图像视频算法库 Bert TextInput Optim izer 性能优越:  分布式存储  分布式查询 功能完备:  GSL/负采样  主流图算法  异构图 (user/item/attribute)
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    尽管每天都有深度学习相关算法论文的发布,但是作者相信,深度学习的核心思想和基 础理论是共通的。本书已尽可能地涵盖其中基础、主流并且前沿的算法知识,但是仍然有很 多算法无法涵盖,读者学习完本书后,可以自行搜索相关方向的研究论文或资料,进一步学 习。 深度学习是一个非常前沿和广袤的研究领域,鲜有人士能够对每一个研究方向都有深刻 的理解。作者自认才疏学浅,略懂皮毛,同时也限于时间和篇幅关系,难免出现理解偏差甚 https://item.jd.com/12954866.html ❑ 联系邮箱(一般问题建议 Github issues 交流):liangqu.long AT gmail.com ❑ 配套视频课程(收费,提供答疑等全服务,比较适合初学者): 深度学习与 TensorFlow 入门实战 深度学习与 PyTorch 入门实战 https://study.163.com/course/courseMai 和 Google TPU 等并行加速芯片训练模型参数。如围棋程序 AlphaGo Zero 在 64 块 GPU 上从 零开始训练了 40 天才得以超越所有的 AlphaGo 历史版本;自动网络结构搜索算法使用了 800 块 GPU 同时训练才能优化出较好的网络结构。 目前普通消费者能够使用的深度学习加速硬件设备主要来自 NVIDIA 的 GPU 显卡, 图 1.12 例举了从 2008 年到
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . 23 3.2.7.4 视觉问答模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.7.5 视频问答模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Keras FAQ: 常见问题解答 . . . . 这是可行的,并且返回上面定义的 10-way softmax。 y = model(x) 快速开始 18 这种方式能允许我们快速创建可以处理序列输入的模型。只需一行代码,你就将图像分类 模型转换为视频分类模型。 from keras.layers import TimeDistributed # 输入张量是 20 个时间步的序列,每一个时间为一个 784 维的向量 input_sequences question_input], outputs=output) # 下一步就是在真实数据上训练模型。 3.2.7.5 视频问答模型 现在我们已经训练了图像问答模型,我们可以很快地将它转换为视频问答模型。在适当的训练 下,你可以给它展示一小段视频(例如 100 帧的人体动作),然后问它一个关于这段视频的问题 (例如,「这个人在做什么运动?」-> 「足球」)。 from keras.layers import
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    Tango Google的Tango项目演示视频 Tango为终端开发者提供了从硬件到软件的整套AR开发套件 SLAM应用介绍 • 混合现实:微软HoloLens HoloLens融合了场景位置感知和头盔显示技术,并提供了完整的软硬件解决方案。 Hololens部分传感器 左右双目+前视RGB摄像头+深度传感器 Hololens宣传视频 视觉SLAM • 主要传感器 • 单目摄像头 相机姿态恢复与场景三维结构恢复 • 求解相机参数和三维点云 • 如何处理循环回路序列和多视频序列? • 如何高效高精度地处理大尺度场景? • 如何处理动态场景? • 如何处理快速运动和强旋转? 复杂环境下的主要挑战 我们课题组的工作 • 面向大尺度场景的运动恢复结构 • ENFT-SFM:能够高效地处理大尺度场景下拍摄的循环回路和多 视频序列。 • 单目视觉的同时定位与地图构建 • ENFT-SLA 并能处理快速运动和强 旋转 。 ENFT-SFM: Efficient Non- Consecutive Feature Tracking for Robust SFM 循环回路序列和多视频序列 • 如何将不同子序列上的相同特征点高效地匹配上? • 如何高效地进行全局优化,消除重建漂移问题? VisualSFM 结果 ENFT:高效的非连续帧特征跟踪 基于两道匹配的连续帧跟踪
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
  • pdf文档 李东亮:云端图像技术的深度学习模型与应用

    月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 中国最大的互联网安全公司 360智能硬件 智能摄像头超400万,儿童手表超 350万,行车记录仪超300万 SACC2017 奇虎360 安全 ——360的基因 机器人 AR/VR/MR 智能手机 穿戴设备 SACC2017 万物互联的核心技术 视觉感知 语音感知 语义理解 人工智能 大数据分析 物 环境 SACC2017 图像 视频 检测 识别 分割 跟踪 物 环境 数 据 核 心 云端 移动端 业 务 视觉感知模型 SACC2017 视觉感知核心问题 Object Segmentation Object ü通过多个相关任务共同学习提高算法性能 •稀疏标注 ü在节省标注工作量的的同时,充分利用视频数据 Forward Block Forward Block deconvolution deconvolution 分割 convolution convolution 检测 识别 Single Frame Predictor SACC2017 视觉感知模型-视频 Forward Block Forward Block
    0 码力 | 26 页 | 3.69 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . 375 9.8 束搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 9.8.1 贪心搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 9.8.2 穷举搜索 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 9.8.3 束搜索 . . . . . . . . . . . . . . . . . . . . . . . . . ng)的。就像在现实生活中,尽管模拟考试考得很好,真正的考 试不一定百发百中。 1.2.4 优化算法 当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出 最佳参数,以最小化损失函数。深度学习中,大多流行的优化算法通常基于一种基本方法–梯度下降(gradient descent)。简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果仅对该参数进行少量变动,训
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 45 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
Qcon北京2018深度学习视频搜索领域实践刘尚pdf图像处理技术沈小勇百度工程曹皓QCon2018基于结构结构化姚唐仁阿里云上建模程孟力PyTorch深度学习KerasPython复杂环境视觉同时定位地图构建李东亮云端模型应用动手v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩