积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部英语(14)中文(简体)(11)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Support Vector Machine

    Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ωT x + b = 0 (1) where ω ∈ Rn the margin is defined as γ = min i γ(i) (6) 1 ? ? ! ? ! Figure 1: Margin and hyperplane. 2 Support Vector Machine 2.1 Formulation The hyperplane actually serves as a decision boundary to differentiating samples are so-called support vector, i.e., the vectors “supporting” the margin boundaries. We can redefine ω by w = � s∈S αsy(s)x(s) where S denotes the set of the indices of the support vectors 4 Kernel
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    Lecture 6: Support Vector Machine Feng Li Shandong University fli@sdu.edu.cn December 28, 2021 Feng Li (SDU) SVM December 28, 2021 1 / 82 Outline 1 SVM: A Primal Form 2 Convex Optimization Review parallely along ω (b < 0 means in opposite direction) Feng Li (SDU) SVM December 28, 2021 3 / 82 Support Vector Machine A hyperplane based linear classifier defined by ω and b Prediction rule: y = sign(ωTx Scaling ! and " such that min& ' & !() & + " = 1 Feng Li (SDU) SVM December 28, 2021 14 / 82 Support Vector Machine (Primal Form) Maximizing 1/∥ω∥ is equivalent to minimizing ∥ω∥2 = ωTω min ω,b ωTω
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    Qwen Qwen Team 2024 年 05 月 11 日 快速开始 1 文档 3 i ii Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been llm import get_chat_model # Example dummy function hard coded to return the same weather # In production, this could be your backend API or an external API def get_current_weather(location, unit='fahrenheit'): context window size or text chunk size depending on your computing resources. Qwen 1.5 model families support a maximum of 32K context window size. import torch from llama_index.core import Settings from llama_index
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    generate realistic text accompanying the given prompts. Both these models have been deployed in production. BERT is used in Google Search to improve relevance of results, and GPT-3 is available as an API with the existing resource constraints. Similarly, having models directly on-device would also support new offline applications of these models. As an example, the Google Translate application supports example, to get size and latency improvements with quantized models, we need the inference platform to support common neural net layers in quantized mode. TFLite supports quantized models, by allowing export
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    open source machine learning framework that accelerates the path from research prototyping to production deployment. Learn clarity and legibility of written content. Example: 9 Brand Guidelines PyTorch Support — Green (Digital) Support — Green (Digital) Coding Text— Light Gray (Digital) Coding Text— Dark
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》1-TensorFlow初印象

    1980s��������� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning 1990s��������������� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale ������������������ Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning ����� Google ��� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale
    0 码力 | 34 页 | 35.16 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    Python Deep Learning library* Author: Keras-Team Contributor: 万 震 (WAN Zhen) � wanzhenchn � wanzhen@cqu.edu.cn 2018 年 12 月 24 日 *Copyright © 2018 by Keras-Team 前 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 此引发一切后果贡献者概不负责。 The main reason of https://github.com/wanzhenchn/keras-docs-zh. Thanks for the Chinese translation work done by keras-team, this document is produced based on it. Statement: This document can be freely used for learning
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    Finance L.P. All rights reserved. Qcon Beijing April 21, 2018 Biye Li Team Manager, Data Technologies Automation Xiangqian Yu Team Lead, Derivatives Data From Keyboards to Neural Networks 从键盘到神经网络 ©
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》8-TensorFlow社区参与指南

    than a framework TFX - �� TensorFlow ���������� Baylor, Denis, et al. "Tfx: A tensorflow-based production-scale machine learning platform." Proceedings of the 23rd ACM SIGKDD International Conference on Mining. ACM, 2017. TFX - �� TensorFlow ���������� Baylor, Denis, et al. "Tfx: A tensorflow-based production-scale machine learning platform." Proceedings of the 23rd ACM SIGKDD International Conference on ��-Kubeflow ���� AI ���� Business Requirement Production Design Data Processing Model Training Model Visualization Model Serving Production Verification Business Success ���� ����� ����
    0 码力 | 46 页 | 38.88 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead of enqueued in a static graph, improving ease of use begin Before you can run an NGC deep learning framework container, your Docker ® environment must support NVIDIA GPUs. To run a container, issue the appropriate command as explained in Running A Container Container and specify the registry, repository, and tags. About this task On a system with GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker engine loads the image
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
LectureNotesonSupportVectorMachineAI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterIntroductionPyTorchBrandGuidelinesTensorFlow快速入门实战印象Keras基于Python深度学习QCon北京2018键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野社区参与指南Release
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩