PieCloudDB Database V2.1 版本说明
少连接操作需要处理的数据量,使得查询性能显著提升。 • 实现了 Block Skipping 的优化机制:数据库运行查询语句时,通过计算每个块 (block)中列聚集信息,在执行期间跳过非必要的数据块,减少数据读取量提高查询性 能。 • 极速 Analyze(Smart Analyze): PieCloudDB 实现极速 Analyze,更快的生 成精确的查询规划统计信息,从而在查询时可以生成更优的查询计划。 • 全新的缓存机制:在 多层缓存结构。 其中,针对元数据,PieCloudDB 实现了元数据层全新的缓存机制,有效减少了访问元 数据服务器带来的网络通信开销和元数据服务器的负载,提高元数据访问的速度。 • 可观察性增强:可得到更多的查询时系统的统计信息,包括元数据管理、S3 等。 • Vacuum 优化:在元数据层通过快速过滤不需要 vacuum 的数据,从而实现 vacuum 加速。 • 存储引擎 简墨(JANM) o 优化端到端访问控制管理和证书管理,增强安全能力 o 一键部署优化 • 数据洞察优化: o SQL 结果页面 UI 更新,界面更加简洁优雅。优化超长结果显示,可支持选中结 果直接复制 o 支持执行请求时自由切入/切出页面,不影响用户进行其他操作 o 支持快捷键执行请求 o 支持 sql 文本查找/替换 • 数据导入优化:0 码力 | 3 页 | 257.15 KB | 1 年前3πDataCS赋能工业软件创新与实践
让数据存储、SQL查询、向量计算以及机器学习等能⼒全面升级。 @2024 OpenPie. All rights reserved. OpenPie Confidential • 全新云原⽣架构「⼀份数据,多引擎计算」 弹 性 扩 缩 容 , 打 破 数 据 孤 岛 • 全 面 支 持 H T A P 湖 仓 ⼀ 体 和 向 量 计 算 • 原 ⽣ 支 持 数 据 治 理 , 三 权 分 离 • 支 持 ⼤ 语 ⾔ 基 仓⾄云原⽣数据平台 是⼀个存储系统+计算框架的软件框架。主要解决海量数据存储与计算的问题, 是⼤数据技术中的基⽯。让用户可以在不了解分布式底层细节的情况下,开发 分布式程序,以⼀种可靠、⾼效、可伸缩的⽅式进⾏数据处理。 组件很多,常见约30个,基础组件包括:Hadoop通用功能库、HDFS、 MapReduce以及YARN 。可视化管理是Ambari,其他的计算引擎、列存数据库 等都需 ⽣态丰富,对结构化数据、半结构化数据以及非结构化数据都支持,可以很好 的完成各种业务场景的数据处理需求。但是对于开发的要求比较⾼,需要掌握 多种组件的不同使用⽅法,业务开发周期会比较久。 国外开源软件,与国产软硬件兼容性差,不符合信创趋势,也⽆法直接利用云 资源的弹性能⼒。组件太多,导致集群部署和后期运维管理很麻烦,市场上相 关⼈才储备量不多,技术兜底依赖于Cloudera,国内第三⽅公司主要是基础运 维和开发为主。0 码力 | 36 页 | 4.25 MB | 1 年前3PieCloudDB云原生数仓虚拟化之路
高 质 量 发 展 注 入 加 速 度 云 计 算 时 代 的 到 来 数 据 计 算 时 代 的 到 来 服务器整合,降低服务器硬件成本 云计算平台统⼀运维降低成本 服务器资源池可⽤空间增⼤ 数据资源池可⽤空间增⼤ 虚拟机动态迁移对硬件⽆感知 数仓整合,降低服务器硬件或者虚拟机成本 数据计算平台统⼀ 运维降低成本 虚拟数仓数仓⾼在线 虚拟数仓动态spinoff/retire对计算资源⽆感知 器⽆感知技术(Serverless)利⽤云上⽆限计算资源 和弹性保证了虚拟数仓永远在线可⽤,S3存储和跨 云灾备能⼒保证了永不丢数。 数据计算资源按需扩缩容,实现计算资源配置最优化, 提升数仓的敏捷性和弹性,打开⽆限数据计算空间, 更好地赋能业务发展并⾛向绿⾊。 降低数仓硬件和管理成本 提升数据计算资源利用效益 坚如磐石 | 高安全 高在线 高可靠 突 破 性 创 新 的 核 心 技 术 出 色 的 数 仓 成 本 运用元数据-计算-数据分离的三层架构,实现云上存储资源与 计算资源的独⽴管理。云上计算资源可弹性分配,有查询计 算任务的时候按需启动,按照使⽤时间和规模计算成本。 eMPP分布式专利技术 在云上,PieCloudDB利⽤eMPP(elastic Massive Parallel Processing)架构,实现多集群并发执行任务。企业可灵活 进⾏扩缩容,随着负载的变化实现⾼效的伸缩,轻松应对 PB级海量数据。0 码力 | 44 页 | 1.64 MB | 1 年前3兼容龙蜥的云原生大模型数据计算系统:πDataCS
运用突破性计算理论、 独创的云原生数据库旗舰产品以及之上的算法和数学模型,建立下一代云原生数据平台的前沿标准, 驱动企业实现从"软件公司"到"数据公司"再到"数学公司"的持续进阶。 拓数派旗下大模型数据计算系统(PieDataComputing System,缩写πDataCS),以云原生技术 重构数据存储和计算,一份存储,多引擎数据计算,全面升级大数据系统至大模型时代,使得自主可 控的 180 6 2 数 据 计 算 , 只 为 新 发 现 (Data Computing for New Discoveries) • 全新云原生架构「一份数据,多引擎计算」 弹 性 扩 缩 容 , 打 破 数 据 孤 岛 • 全 面 支 持 H T A P 湖 仓 一 体 和 向 量 计 算 • 原 生 支 持 数 据 治 理 , 三 权 分 离 • 支 持 大 语 言 统一Catalog 是一个存储系统+计算框架的软件框架。主要解决海量数据存储与计算的问题,是 大数据技术中的基石。让用户可以在不了解分布式底层细节的情况下,开发分布 式程序,以一种可靠、高效、可伸缩的方式进行数据处理。 组件很多,常见约30个,基础组件包括:Hadoop通用功能库、HDFS、 MapReduce以及YARN 。可视化管理是Ambari,其他的计算引擎、列存数据库 等都需0 码力 | 29 页 | 7.46 MB | 1 年前3PieCloudDB 的云原生之路
源和弹性保证了虚拟数仓永远在线可用,S3 存储和 跨云灾备能力保证了永不丢数。 数据计算资源按需扩缩容,实现计算资源配置最优化, 提升数仓的敏捷性和弹性,打开无限数据计算空间, 更好地赋能业务发展并走向绿色。 降低数仓硬件和管理成本 提升数据计算资源利用效益 坚如磐石 | 高安全 高在线 高可靠 突 破 性 创 新 的 核 心 技 术 出 色 的 数 仓 成 本 效 益 IvorySQL开源数据库社区 PieCloudDB 运用元数据-计算-数据分离的三层架构,实现云上存储资源 与计算资源的独立管理。云上计算资源可弹性分配,有查询 计算任务的时候按需启动,按照使用时间和规模计算成本。 eMPP 分布式专利技术 在云上,PieCloudDB 利用 eMPP(elastic Massive Parallel Processing)架构,实现多集群并发执行任务。企 业可灵活进行扩缩容,随着负载的变化实现高效的伸缩, 轻松应对 PB 级海量数据。 分布式引擎 IvorySQL开源数据库社区 计算 • MPP o 将一个单一计算任务在大量独立的计算机上并行执行。 • 多租户、多集群 • 弹性伸缩:集群大小、集群类型、集群数量 • 隔离性:不同租户、不同负载 • 高并发 • 高可用 • 可按使用量付费 IvorySQL开源数据库社区 计算 • 多租户隔离 • 容量和带宽独立于计算伸缩 • 可按使用量付费 • 高可用/可靠存储0 码力 | 47 页 | 1.80 MB | 1 年前3PieCloudDB Database 产品白皮书
低价的对象存储 Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 些优势使云原生数据库得以降低计算成本,提供无限丰富的计算资源,实现分钟级的伸缩性和真正的高可用,释放 出数据计算产生更多智能的机会。以下是云原生时代数字企业的典型使用场景 * 每天有数个小的计算任务,需要数个节点 * 每周有一个中等计算任务,需要数十个节点 * 每月有一个大的计算任务,需要数干个节点 认为计算技术目前经历了三代平台: @大型机时代; @PC机时 代; 和 回云计算时代。每一代计算平台的变更,都带来了数据计算技术的突破性创新的可能性。随着计算技术从大型 机时代变革为PC机时代,PC机逐渐取代大型机,极大地降低计算门极,计算资源日渐丰富,数据计算技术突破性创 新。 Openpie 以“Data Computing for New Discoveries ” 数据计算,只为新发现」 为使命,旗下云原生虚拟数仓 PieCloudDB ,是以对行业顶级数据库的抽象思考和设计原则复用为技术路线,采用领先的数仓 虚拟化技术,可将多个数仓统一整合到一个高可用的云虚拟数仓,打通多云的数据管道,数据计算资源按需扩缩容, 提升数仓的敏捷性和弹性,助力企业降低数仓管理复杂度,实现数量级增加可计算数据空间的同时,数量级降低数仓 成本,打开无限数据计算空间,推进AVBI到下一个精度。PieCloudDB在eMPP分布式专利技术、服务器无感知0 码力 | 17 页 | 2.68 MB | 1 年前3云原生虚拟数仓PieCloudDB Database产品白皮书
一趋势靠拢。2020 年数据显示,云数据库已占据整体数据库市场份额的40%,2022年云数据库营收数据将占据数据 库整体市场的半数以上。 1 2 全 球 数 据 圈 预 测 IDC: 3 缺 乏 弹 性 然而,随着数据量的不断攀升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 4 传统数仓的痛点 很多受欢迎的数据库仓库均为分布式数据库,而典型的传统分布式数据库系统大多是 每周有一个中等计算任务,需要数十个节点 每月有一个大的计算任务,需要数千个节点 无限空间: 灵活伸缩: 资源回收: 这些优势使云原生数据库得以降低计算成本,提供无限丰富的计算资源,实现分钟级的伸缩性和真正的高可用,释放 出数据计算产生更多智能的机会。以下是云原生时代数字企业的典型使用场景: 面对这些不断变化的业务需求和计算任务,企业产生了更高的需求: 充分结合云计算、大规模并行处理技术的云原生虚拟数仓 为计算技术目前经历了三代平台: ①大型机时代;②PC机时 代;和 ③云计算时代。每一代计算平台的变更,都带来了数据计算技术的突破性创新的可能性。随着计算技术从大型 机时代变革为PC机时代,PC机逐渐取代大型机,极大地降低计算门槛,计算资源日渐丰富,数据计算技术突破性创 新。 OpenPie 以 “ Data Computing for New Discoveries ”「数据计算,只为新发现」为使命,旗下云原生虚拟数仓0 码力 | 17 页 | 2.02 MB | 1 年前3云原生数据库 PieCloudDB eMPP架构设计与实现
ChinaUrnx ,千UB A 2022 2022/12/14-16 2OlO OynamoDB CirroD 叩i Hubble B . SinoOB Ste 云树Sh可d :.. G.IIX卢罩" abr ::::· … .• e …. pyH� un lytlcD r.p ur re 。 Rock.s 2014 2018 元数据管理 • 临时状态存储(如lock等) 也放在FoundationDB • 依赖于FoundationDB的KV特性、可串⾏化事务、watcher机制 • 多个集群(虚拟数仓)可以共享⼀份元数据 • FoundationDB⾼可⽤设计、备份恢复保证元数据的可靠性和可 ⽤性 元数据管理缓存 • ⺫的: • 减轻FoundationDB集群负担 • 加速查询优化(⺴络延迟远⾼于内存延迟) ⽤户数据可靠安全 • ⽤户数据⾼可靠实时加解密 (TDE) • 分布式对象存储多副本多可⽤区保证数据安全:“⼀份”数据, 避免数据不⼀致 • 将来Time Travel查询“回收站”数据 ⽤户数据查询效率优化 • 远程访问数据要考虑的点:性能和成本 • 如何解决? • 数据和/或辅助信息缓存,同时⼀致性Hash减少数据移动 • 读取优化(⽐如异步并⾏等) • 计算优化(各种功能特性持续优化中)0 码力 | 31 页 | 1.43 MB | 1 年前3PieCloudDB:基于PostgreSQL的eMPP云原生数据库
OpenPie Confidential 计算 • MPP • 将一个单一计算任务在大量独立的计算机上并行执行。 • 多租户、多集群 • 弹性伸缩:集群大小、集群类型、集群数量 • 隔离性:不同租户、不同负载 • 高并发 • 高可用 • 可按使用量付费 @2022 OpenPie. All rights reserved. OpenPie Confidential • 多租户隔离 All rights reserved. OpenPie Confidential • ACID - 支持两种隔离级别:读已提交、可重复读 • 扩展性 - 事务管理器无单点性能瓶颈 • 隔离性 - 不同租户之间的事务管理器是完全隔离的,不会相互影响 • 容错性 - 事务管理器支持对各类基础设施故障进行自动容错 事务 @2022 OpenPie. All rights reserved • 数据的局部性优化 (SIMD) • 现代存储技术 • 新硬件的使用 @2022 OpenPie. All rights reserved. OpenPie Confidential 构建新一代云原生存储引擎 • 数据分布和弹性 • 分布式eMPP架构 (一致性Hash) • 本地数据减少高延时的云存储访问 • 减少数据移动 • 扩缩容最少的数据移动 • 数据安全性 • 透明数据加密0 码力 | 45 页 | 1.32 MB | 1 年前3PieCloudDB:云原生分布式虚拟数仓的诞生之旅
OpenPie. All rights reserved. OpenPie Confidential 构建之路 - 数据存储 • 最后设计格式:JANM (简墨) • ⼀个S3⽂件内所有数据MVCC可⻅性⼀致 (U/D/I写新⽂件). • ⾏列混存,Cache访问友好. • 附带元数据⽤于data skipping、预聚集等. • Encode/Compress • Encryption (TDE) rights reserved. OpenPie Confidential 构建之路 - 数据访问加速 • S3访问考虑(提升性能 & 降低成本) • 使⽤缓存,⻓远来说分布式缓存. • 虚拟数仓:⼀致性Hash存储缓存⽂件. • Data Skipping (⽐如Block Skipping,预聚集,etc). • S3访问通⽤优化:并⾏化、预读、异步、Mpp引擎"steal". • C++抽象接⼝,访问更多的storage OpenPie Confidential 构建之路 - 元数据 • 设计 • 借助于FoundationDB的串⾏化事务模拟轻量级锁. • 分布式锁来避免必要的并发冲突. • KV存储的排序性来实现btree索引. • 没有WAL. • …... @2022 OpenPie. All rights reserved. OpenPie Confidential 构建之路 - 元数据缓存0 码力 | 24 页 | 2.01 MB | 1 年前3
共 14 条
- 1
- 2