PieCloudDB Database 产品白皮书
Reserved, Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 行业背景 数据量的爆发式增长 数据库的未来在云上 传统数仓的痛点 云时代的数据处理要求 piecloudDB,云原生虚拟数仓 PieCloudDB 产品概述 PieCloudDB 产品架构 PieCloudDB 产品特性 PieCloudDB 产品核心技术 PieCloudDB8 宽表有3亿条记录 MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1 录。数据计算时,所有机器同时并行计算,理论上最 把计算时间降低到单机部署的 1/n (n为机器数量) ,节省了海量数据的处理时间。 传统数据仓库架构 然而,随着数据量的不断尝升,企业对数据仓库的要求也越来越高,在使用过程中,传统 MPP 数据库解决方案迎来 了一系列的瓶颈: 传统数据仓库的计算和存情是| 容计算资源 关人员掌握复杂的技术 栈,技术的更新迁代迅速,相关人员需保持积极的知识更新意识。根关人才市场较小,人才芽乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生 时代,越来越多的企业将应用向云上迁移,而越来越多的数据也流向云上。公有云带来了众多优势:0 码力 | 17 页 | 2.68 MB | 1 年前3云原生虚拟数仓PieCloudDB Database产品白皮书
OpenPie All Right Reserved . 行业背景 数据量的爆发式增长 数据库的未来在云上 传统数仓的痛点 云时代的数据处理要求 PieCloudDB,云原生虚拟数仓 PieCloudDB 产品概述 PieCloudDB 产品架构 PieCloudDB 产品特性 亿条记录, MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1亿条记录。数据计算时,所有机器同时并行计算,理论上最高可以 把计算时间降低到单机部署的 1/n(n为机器数量),节省了海量数据的处理时间。 传统数据仓库的计算和存储是紧密耦合的,计算资源和存储资源按某一比例强绑定,因此用户在扩容时,必须同时扩 容计算资源和存储资源,在扩缩容、运维、迁移上都存在一定的挑战。当企业遇到负载高峰时刻或需要紧急得到某个 复杂的技术 栈,技术的更新迭代迅速,相关人员需保持积极的知识更新意识。相关人才市场较小,人才匮乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 5 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生 时代,越来越多的企业将应用向云上迁移,而越来越多的数据也流向云上。公有云带来了众多优势:0 码力 | 17 页 | 2.02 MB | 1 年前3πDataCS赋能工业软件创新与实践
灵活扩展的数据引擎,支持关系型数据库SQL、Spark/Flink 等流批⼀体处理、LLM的向量数据库以及GIS地理数据库等。 1 2 3 ⼤模型数据计算系统,以云原⽣技术重构数据存储和计算,⼀份数据,多引擎数据计算,AI数学模型、数据和 计算三者互为增强,全面升级⼤数据系统⾄⼤模型时代 ,赋能⾏业AI场景应用。 具备整体数据平台⽅案,支持多模数据处理(结构化、半结构化 以及非结构化数据),实现数据共享和分析。 分布式程序,以⼀种可靠、⾼效、可伸缩的⽅式进⾏数据处理。 组件很多,常见约30个,基础组件包括:Hadoop通用功能库、HDFS、 MapReduce以及YARN 。可视化管理是Ambari,其他的计算引擎、列存数据库 等都需要额外的组件,应对不同的场景需要安装对应的组件和依赖。 ⽣态丰富,对结构化数据、半结构化数据以及非结构化数据都支持,可以很好 的完成各种业务场景的数据处理需求。但是对于开发的要求比较⾼,需要掌握 应对各种场景的计算,同时也兼容Spark、 Flink等计算任务,保留用户的使用习惯。 ⽣态完善,支持主流的开发语⾔和数据科学⼯具,支持多模数据处理(结构化、 半结构化以及非结构化),提供标准的SQL接⼝和API,完成各种复杂场景的数 据处理,业务开发周期短,现存的代码基本可以⽆缝迁移和复用。 国内自主研发,具备社区版、商业版以及云SaaS服务,与国产软硬件完美兼容, 属于信创产业。支0 码力 | 36 页 | 4.25 MB | 1 年前3云原生数据库PieCloudDB 性能优化之路
Q/A Contents 录 目 01 • 预处理阶段 • 通过逻辑上的等价变换,把查询树转换为更加简单高效的等式 • 分发约束条件,收集外连接信息等 • 扫描/连接优化阶段 • 主要处理扫描和连接操作 • 扫描/连接之外的优化阶段 • 主要处理除扫描和连接之外的其他操作,例如聚集、排序等 • 后处理阶段 • 主要把前面的处理结果转换成执行器期望的形式 • 简化表达式 • 简化连接树 (COALESCE( bar.c, 1) = 42) -> Seq Scan on foo -> Materialize -> Seq Scan on bar (5 rows) • 主要处理查询语句中FROM和WHERE部分 • 同时也会考虑到ORDER BY的信息 • 代价驱动 • 为基表生成扫描路径,并计算扫描路径的代价和结果集大小 • 搜索整个连接顺序空间,为连接操作生成连接路径 (Pab)) innerjoin C on (Pbc) != A leftjoin (B innerjoin C on (Pbc)) on (Pab) • 处理GROUP BY、 聚集、窗口函数、DISTINCT • 处理集合操作 • 处理ORDER BY • 以上每一步操作都会产生一个或多个路径 • 为每个路径添加LockRows, Limit, ModifyTable • 把最优路径转换为查询计划0 码力 | 26 页 | 711.44 KB | 1 年前3云原生数据库 PieCloudDB eMPP架构设计与实现
driver等). 云原生 云中立 • 弹性计算资源(横向纵向)、极速调整 • 多集群是另外一个弹性的维度 • 共享用户数据(如按需付费的对象存储) • 共享元数据 • MPP架构:分布式,海量数据并行处理 • e代表弹性(elastic) 完善的Postgres生态 为什么选择Postgres? • 关于Postgres • 公司中⽴,开源协议友好,国际⼀流⼯程⽔准的先进开源数据库 • Po PieCloudDB Optimizer 是⼀个基于eMPP架构的云原⽣分布式优化器,它 可以为海量数据集上的复杂OLAP查询提供最优的查询计划。 • 分布式优化器 • 处理复杂OLAP查询 • 云原生优化器 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 更多⾼阶计算功能 租户隔离(彼此不影响) • ⾼可⽤(⾃动处理各种错误) • ⾼并发 PieCloudDB⽣态 • 各种外表数据源联邦查询组件天然⽀持(或者需少量修改) • 各种Postgres/Greenplum组件或者功能天然⽀持,如In- database AI组件Madlib, json, text等 • 实时ETL/ELT性能对⽐PieCloudDB 1.0有巨⼤提升 • 流处理:原⽣⽀持kafka数据导⼊和查询0 码力 | 31 页 | 1.43 MB | 1 年前3兼容龙蜥的云原生大模型数据计算系统:πDataCS
式程序,以一种可靠、高效、可伸缩的方式进行数据处理。 组件很多,常见约30个,基础组件包括:Hadoop通用功能库、HDFS、 MapReduce以及YARN 。可视化管理是Ambari,其他的计算引擎、列存数据库 等都需要额外的组件,应对不同的场景需要安装对应的组件和依赖。 生态丰富,对结构化数据、半结构化数据以及非结构化数据都支持,可以很好的 完成各种业务场景的数据处理需求。但是对于开发的要求比较高,需要掌握多种 应对各种场景的计算,同时也兼容Spark、 Flink等计算任务,保留用户的使用习惯。 生态完善,支持主流的开发语言和数据科学工具,支持多模数据处理(结构化、 半结构化以及非结构化),提供标准的SQL接口和API,完成各种复杂场景的数据 处理,业务开发周期短,现存的代码基本可以无缝迁移和复用。 国内自主研发,具备社区版、商业版以及云SaaS服务,与国产软硬件完美兼容, 属于信创产业。支0 码力 | 29 页 | 7.46 MB | 1 年前3PieCloudDB Database V2.1 版本说明
Release Note 版本号:V2.1 发布日期:2022 年 10 月 内 核 • 聚集下推功能得到增强:通过把聚集操作下推到连接操作之前去执行,极大的减 少连接操作需要处理的数据量,使得查询性能显著提升。 • 实现了 Block Skipping 的优化机制:数据库运行查询语句时,通过计算每个块 (block)中列聚集信息,在执行期间跳过非必要的数据块,减少数据读取量提高查询性 等。 • Vacuum 优化:在元数据层通过快速过滤不需要 vacuum 的数据,从而实现 vacuum 加速。 • 存储引擎 简墨(JANM) 异常处理的优化: 避免各种异常情况下数据残留。 • 简墨(JANM)分布式处理增强:更高效的元数据采集和分发,提升用户查询响 应时间,降低系统负载 • 简墨(JANM)动态分配读取文件增强 dispatch 性能:此优化将动态的分配要0 码力 | 3 页 | 257.15 KB | 1 年前3PieCloudDB:基于PostgreSQL的eMPP云原生数据库
友好的用户接口(WebSql, ODBC/JDBC driver等). 云原生 • 弹性计算资源(横向和纵向)、极速调整 • 共享用户数据(典型如廉价对象存储) • 共享元数据 • MPP架构:分布式,海量数据并行处理 @2022 OpenPie. All rights reserved. OpenPie Confidential Postgres 生态 PieCloudDB 重新打造 PostgreSQL Confidential PieCloudDB Optimizer 是一个基于eMPP架构的云原生分布式优化器,它 可以为海量数据集上的复杂OLAP查询提供最优的查询计划。 • 分布式优化器 • 处理复杂OLAP查询 • 云原生优化器 PieCloudDB Optimizer @2022 OpenPie. All rights reserved. OpenPie Confidential 充分考虑 分布式架构的特点 计算节点间 并行执行 多个更小的 计划单元 @2022 OpenPie. All rights reserved. OpenPie Confidential 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 的优化 等等 @2022 OpenPie. All rights0 码力 | 45 页 | 1.32 MB | 1 年前3PieCloudDB 的云原生之路
达奇是一个基于 eMPP 架构的云原生分布式优化器,它可以 为海量数据集上的复杂 OLAP 查询提供最优的查询计划。 • 分布式优化器 • 处理复杂 OLAP 查询 • 云原生优化器 PieCloudDB 优化器「达奇」 IvorySQL开源数据库社区 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 提升转换 CTE和递归CTE 着负载的变化实现高效的伸 缩,轻松应对PB级海量数据。 多云部署 可根据客户需求在任何 IaaS云和裸硬件上安装。 可打通多云的数据管道, 解锁对特定IaaS云的依赖 并获得云资源议价权。 实时处理 在计算层,各个计算节点针对元数据和用 户数据都设计了多层缓存结构,避免网络 延迟和数据移动,提高计算效率,保证用 户的实时性需求。 数据安全 PieCloudDB 提供企 业级透明数据加密。0 码力 | 47 页 | 1.80 MB | 1 年前3PieCloudDB云原生数仓虚拟化之路
是一个基于eMPP架构的云原生分布式优化器,它 可以为海量数据集上的复杂OLAP查询提供最优的查询计划。 • 分布式优化器 • 处理复杂OLAP查询 • 云原生优化器 PieCloudDB Optimizer @2022 OpenPie. All rights reserved. OpenPie Confidential 处理复杂OLAP查询 多表连接的最 优顺序搜索 多阶段聚集 分区表的静态 和动态裁剪 相关子查询的 着负载的变化实现高效的伸 缩,轻松应对PB级海量数据。 多云部署 可根据客户需求在任何 IaaS云和裸硬件上安装。 可打通多云的数据管道, 解锁对特定IaaS云的依赖 并获得云资源议价权。 实时处理 在计算层,各个计算节点针对元数据和用 户数据都设计了多层缓存结构,避免网络 延迟和数据移动,提高计算效率,保证用 户的实时性需求。 数据安全 PieCloudDB提供企业 级透明数据加密。运0 码力 | 44 页 | 1.64 MB | 1 年前3
共 14 条
- 1
- 2