积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(36)Service Mesh(19)系统运维(9)云原生CNCF(9)存储(9)Istio(4)数据库(3)TiDB(3)Apache APISIX(3)综合其他(2)

语言

全部中文(简体)(49)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(51)
 
本次搜索耗时 0.074 秒,为您找到相关结果约 51 个.
  • 全部
  • 云计算&大数据
  • Service Mesh
  • 系统运维
  • 云原生CNCF
  • 存储
  • Istio
  • 数据库
  • TiDB
  • Apache APISIX
  • 综合其他
  • 全部
  • 中文(简体)
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TiDB中文技术文档

    服务 TiDB 进程启动参数 TiDB 系统数据库 TiDB 系统变量 TiDB 专用系统变量和语法 TiDB 访问权限管理 TiDB 用户账户管理 使用加密连接 SQL 优化 理解 TiDB 执行计划 统计信息 语言结构 字面值 数据库、表、索引、列和别名 关键字和保留字 用户变量 表达式语法 注释语法 字符集和时区 字符集支持 字符集配置 时区 数据类型 日期和时间类型 基本数据类型 函数和操作符 位函数和操作符 Cast 函数和操作符 加密和压缩函数 信息函数 JSON 函数 GROUP BY 聚合函数 其他函数 精度数学 SQL 语句语法 数据定义语句 (DDL) 数据操作语句 (DML) 事务语句 数据库管理语句 Prepared SQL 语句语法 实用工具语句 JSON 支持 Connectors 和 API TiDB 事务隔离级别 错误码与故障诊断 与 MySQL 兼容性对比 TiDB TiDB 数据目录 TiDB 系统数据库 TiDB 系统变量 TiDB 专用系统变量和语法 TiDB 服务器日志文件 TiDB 访问权限管理 TiDB 用户账户管理 使用加密连接 SQL 优化 理解 TiDB 执行计划 统计信息 语言结构 字面值 数据库、表、索引、列和别名 关键字和保留字 用户变量 表达式语法 注释语法 字符集和时区 字符集支持 字符集配置 时区 数据类型 数值类型 日期和时间类型 字符串类型
    0 码力 | 444 页 | 4.89 MB | 5 月前
    3
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3. 方法语法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 17.1. Futures 和 async 语法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refutability(可反驳性): 模式是否会匹配失效 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 19.3. 模式语法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 562 页 | 3.23 MB | 9 天前
    3
  • pdf文档 Service Mesh的实践分享

    今年规划(Roadmap)内部Service Mesh的演进 我是作者名称服务化体系1.0 • OSP(Open Service Platform) • Thrift over Netty • 基于Java语法的DSL • Zookeeper • 胖客户端 • 基本服务治理功能 App OSP Server Service Registry Service Config Center 服务发现
    0 码力 | 30 页 | 4.80 MB | 5 月前
    3
  • pdf文档 23-云原生观察性、自动化交付和 IaC 等之道-高磊

    期的构建各种特征的Paas。业务应用由于不依 赖于运维特性,也实现了标准化,也可以加入 组件市场,此时开放PaaS+开放应用市场可以 构建对应各种环境的应用了。 • 云原生蓬勃而多样的生态成了这种Paas的基础。 • 编排不在以服务为单位,而是以应用为单位, 再也不会出现由于理解不一致导致的交付失败 的情况,而不论底层容器云实现如何,应用的 交付的方式都是一致的。 DevOps是一种文化,是一种组织赋能 应不同交付 场景所要求的不同工具链。比如叠加serverless能力加快镜像构建速度、叠加安全左移能力等等。 OAM使得整体PAAS在通用化的情况下,向多种客户环境交付赋能。 OAM应用实例 从基础设施,到容器运行环境,再到应用都可以加入编排,想要在K8s上编排一切并不是容易的事情,通常一个应用,除了本身的容器之外还有许 多的依赖,常见的依赖有RDS,LB,MNS(SNS,SQS)等这类非容器 OAM实现原理分析 • OAM是更高级的抽象, 执行面打包都是通用 格式,比如HELM,很 好的兼容了现有的基 础设施,无论怎样的 基础设施,都能在高 层保持一致的情况下, 在差异化的环境下运 行,而让业务研发人 员更加关注业务,而 不是基础设施本身。 • OAM本身就是基础设 施即代码的典范设计, 在中间层隔离了用户 使用和底层执行体, 进一步加强了统一性。 标准化能力-微服务PAAS-OAM交付流程模式-抽象流程
    0 码力 | 24 页 | 5.96 MB | 6 月前
    3
  • pdf文档 大规模微服务架构下的Service Mesh探索之路

    + b + c = 300 a * b * c = 1000000 笛卡尔乘积Mixer反省之二:隔离和抽象的层次 ü Mixer的设计目标: • 提供统一抽象(Adapter) • 隔离基础设施后端和Istio其他部分 • 容许运维对所有交互进行精细控制合并Check和Quota ü 我们的反思 • 认可这样的抽象和隔离,确实有必要从应用中剥离出来 • 但是要加多一层Mixer,多一次远程调用 抽象和隔离在Sidecar层面完成,也是可以达到效果的 • 对于Check和Quota,性能损失太大,隔离的效果并不明显 应用 Sidecar Mixer 基础设施后端 但是多付出一次远程 调用是否有足够必要? 对基础设施后端的访问的确 可以下沉到Service Mesh探讨:何为基础设施后端?是否可以区别对待? ü 实现Check的Adapter: • listchecker (黑白名单) • opa (Open Cloudwatch • Dogstatsd • Fluentd • Prometheus • Solarwinds • Stackdriver • Statsd • Stdio 同意视为基础设置, 甚至可能集成更多, 这里的抽象隔离是 我们认可的 但是这些??更应该 视为基本能力,直接 做成Mesh内置功能 List backend Redis for Quota memquota
    0 码力 | 37 页 | 7.99 MB | 5 月前
    3
  • pdf文档 22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊

    云原生是告诉我们:能够适应业务变化的微服务+能够适应制品变化的DevOPS+能够适应技术环境变 化的技术底座=云原生平台;其中变化是以研发循环形式不断出现和累加的,如果不进行治理,那 么这些变化就会积累,稳定性的破坏是熵增的,而云原生基础设施就要做到对变化产生的不稳定因 素进行熵减处理 • 向上站在企业立场上:是要解决微服务体系快速落地的问题,低成本支撑企业创新以及数字疆域规 模扩张 1 技术架构变化:因商业或者演化而 变带来不稳定因素 向上提供抽象化自愈IT运营视角 高效稳定应用资源供给 价值主张 架构 云原生底座=控制器+调度器的组合+Docker=根据环境的变化而动+基于封装 一致性的大规模分发 服务编排基本原理: • 以度量为基础,以NodeSelector算法来 决定在哪儿部署容器服务 • 运行时以期望与实际的差别进行动态调 整到期望的状态 标准化能力-分布式操作系统核心-容器服务-基本技术原理 事实标准的K8S容器服务设计 运维能力,进一步简化云 原生+资源层整体运维和 提升资源利用质量。 标准化能力-按需调度-Serverless 业务价值 架构 • 彻底消除传统服务端基础设施依赖,降低研发复杂性和运维难度 • 按实际调用量进行自动的容量扩缩 • 专注业务逻辑开发,无须关心基础设施 • 只需要将视频存入存储,接入极其简单,达到极致业务体验 • 按需加载资源,使用时调度,不使用时自动回收,达到极致 成本的体验。 • 并行
    0 码力 | 42 页 | 11.17 MB | 6 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    推理大模型 预训练大模型难以通往AGI之路  推理模型如R1——通过逻辑链条推导答案, 分解规划,自我反思  预训练范式像是记忆和模仿,强化学习范 式更像探索实践  记住很多东西只是基础,真正有价值的是 融会贯通 R1找到了人类通往AGI的方向 DeepSeek颠覆式创新——技术创新 27 DeepSeek-R1和GPT-4o不是同一个物种政企、创业者必读 快思考 慢思考 基于DeepSeek的强推理模型,利用科学领域专业知识进行强化学习, 能够打造更加专业的科学推理模型 DeepSeek六大应用方向之五 科学研究:打造科研新范式 44政企、创业者必读 AI For Science,为基础科学带来革命性变化 2024诺贝尔化学奖颁发给研发AlphaFold的两位AI专家 未来所有科学研究都将以AI为中心 过去如何做蛋白质研究 AlphaFold 1. X射线晶体衍射 2. 核磁共振 语言翻译 文本创作 自动驾驶 具身智能 1 2 4 5 知识问答 代码编程 文本生成 多轮对话 图像生成 视频生成 音频生成 A I 数字人 生物制药 新材料研究 脑机接口 基础科学 能源自由 宇宙探索 生命科学 科学 能力 6 AI Fo r Science 知识管理( 内部知识管理、 外部情报分析、 大数据分析、 工作流知识) 专家经验模型( 专业模型训练) 业务流程自动化(
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 逐灵&木苏-阿里巴巴 K8S 超大规模实践经验

    部署应用的,基于 lxc 自研 了 t4 容器并构建了 AI 集团管理 系统 2017 统一资源池 构建了 Sigma 调度系统,收敛了 众多运维平台之下的资源调度系 统,并构建了集团统一资源池, 在此基础上发展出弹性、混部等 技术成果,大幅降低了数据中心 的资源成本 2019 全面拥抱云原生 阿里业务全面上云,运维体系全 面拥抱云原生,基于 k8s 生态在 阿里内部蓬勃发展。在 2019 双 •nearly one million containers 面向终态升级 通过面向终态的应用管理理 念提高应用运维的效率 自愈能力升级 统一容器与应用实例周期简化 应用启动流程 不可变基础设施 分离基础设施与应用容器简化 应用运维复杂性面向终态升级 • 过程式的运维有什么问题? 例子:升级某服务的 3000 个实例 容 器 平 台 运 维 平 台 容 器 平 台 运 维 平 台 风险识别自愈能力升级 • 传统运维体系的效率问题 - 应用启动流程复杂 - 决策链路较长 - 状态一致性风险 容器平台 监控 VIP 服务注册 配置中心 运维平台 观察者 异常消费 基础设施 异常来源• 统一容器与应用实例的生命周期 • 下沉应用的冗余度信息 容器即应用 运维平台 监控 VIP 服务注册 配置中心 启动完成 应用实例的生命周期 API Server Eviction
    0 码力 | 33 页 | 8.67 MB | 5 月前
    3
  • pdf文档 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊

    在云原生产生之前,混合云架构就存在 了,云原生的混合云,除了具备传统混 合云的属性和特性,也同时具备了支撑 现在应用程序更好在不同云形态部署、 运行的能力。 • 云之间同步服务元数据为相同的服务治 理提供基础,同步镜像,为同一服务拓 展算力提供基础,同步Data,为隔离底 层云分布,在业务上的一致性上提供基 础。 • SLB会根据算力资源需要进行切流。 • 混合云本质是一种资源运用形式,资源 使用地位不对等,以私有云为主体。 (并且人的经验无法数据化沉淀),而 得到问题根因后,只能通过人工去修复 或者管理 • 而大数据或者基于监督的AI技术的成熟、 运维领域模型趋于完整、云原生底座也 更成熟的基础上,利用大数据分析根因 (关联性分析)和利用AI进行基于根因分 析的自动化处理成为可能。 • 在精细化的基础上,完整较为成熟的自 动化能力,节约了人力成本同时提高了 效率,也极大得保证了业务连续性。 • 但是,目前真正落地的企业很少,原因 在于大部分企业组织或者文化问题在落 市场特点来规划 实施云原生。 攘外必先安内 项目 说明 全托管K8S 全托管K8S服务带来了发布和扩容效率的提升、更稳定的容器运行时、节点自愈能力,结合发 布自动化、资源管理自动化等能力可以实现应用与基础设施层的全面解耦 统一化ServiceMesh 将应用的分布式复杂性问题托付给Mesh层的数据面和控制面组件,实现全链路精准流量控制、 资源动态隔离以及零信任的安全能力,保证应用架构的稳定性目标的实现。
    0 码力 | 20 页 | 5.17 MB | 6 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术 提高攻击效率,包括挖掘利用漏洞、破解密码、生成恶意代码、发送钓鱼邮件、 网络扫描、社会工程学攻击等,降低网络攻击门槛,增大安全防护难度。 (e)模型复用的缺陷传导风险。依托基础模型进行二次开发或微调,是 常见的人工智能应用模式,如果基础模型存在安全缺陷,将导致风险传导至下 游模型。 3.2.2 现实域安全风险 (a)诱发传统经济社会安全风险。人工智能应用于金融、能源、电信、交通、 民生等传统行 强风险识别、检测、 防护,防止因平台恶意行为或被攻击入侵影响承载的人工智能模型或系统。- 9 - 人工智能安全治理框架 (c)加强人工智能算力平台和系统服务的安全建设、管理、运维能力, 确保基础设施和服务运行不中断。 (d)对于人工智能系统采用的芯片、软件、工具、算力和数据资源,应 高度关注供应链安全。跟踪软硬件产品的漏洞、缺陷信息并及时采取修补加固 措施,保证系统安全性。 4.2
    0 码力 | 20 页 | 3.79 MB | 29 天前
    3
共 51 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
TiDB中文技术文档Rust程序设计程序设计语言简体文版中文版简体中文版1.85ServiceMesh实践分享23原生观察自动自动化交付IaC高磊大规规模大规模微服架构探索22缘起底座PaaS以及周鸿祎清华演讲DeepSeek我们带来创业机会360202502逐灵木苏阿里巴巴阿里巴巴K8S超大超大规模经验实践经验27赋能AIoT边缘计算形态成熟成熟度模型之道人工智能人工智能安全治理框架1.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩