积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(133)Julia(87)云计算&大数据(39)Pandas(31)Java(25)ActiveMQ(21)数据库(19)系统运维(14)Zabbix(13)综合其他(12)

语言

全部英语(181)中文(简体)(25)中文(繁体)(10)[zh](1)日语(1)韩语(1)英语(1)

格式

全部PDF文档 PDF(214)其他文档 其他(7)DOC文档 DOC(1)
 
本次搜索耗时 0.160 秒,为您找到相关结果约 222 个.
  • 全部
  • 后端开发
  • Julia
  • 云计算&大数据
  • Pandas
  • Java
  • ActiveMQ
  • 数据库
  • 系统运维
  • Zabbix
  • 综合其他
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • [zh]
  • 日语
  • 韩语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Effective Ranges: A tutorial for using C++2X ranges

    0 码力 | 56 页 | 15.30 MB | 5 月前
    3
  • pdf文档 PyTorch Release Notes

    to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X reduced memory storage for intermediates (reducing to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X reduced memory storage for intermediates (reducing to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X reduced memory storage for intermediates (reducing
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    and achieves an 80% accuracy with the same number of training steps and labels. Thus, delivering a 2x model compression. Again, this is a hypothetical scenario which illustrates how learning techniques straightforward to apply them on any dataset. A single transformation on every sample results in a dataset 2x the original size. Two transformations applied separately result in a dataset 3x the original size on the pixel values. Let’s take brightness transformation as an example. Figure 3-6 shows an image 2x bright (bottom-right corner) as compared to the original image (center). This transformation causes
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Best Practices for MySQL with SSDs

    11 Percona Server 5.7.10‐3 Storage SAS HDD 2x SEAGATE ST600MP0005 15K rpm SATA SSD 2x Samsung 850 PRO NVMe SSD 2x Samsung XS1715 Quad‐socket (28 Core) Configuration Percona Server 5.7.11‐4 Storage SAS HDD 2x SEAGATE ST600MP0005 15K rpm SATA SSD 2x Samsung 850 Pro SAS SSD 2x Samsung PM1633 NVMe 2x Samsung PM1725 It is generally accepted that
    0 码力 | 14 页 | 416.88 KB | 1 年前
    3
  • pdf文档 2020: The Year of Sanitizers?

    runtime overhead (performance impact: depending on tool, from 2x up to 10x) extra-memory usage (for memory related tools/instrumentation), 2x or more sometimes difficult to map error reports into source runtime overhead (performance impact: depending on tool, from 2x up to 10x) extra-memory usage (for memory related tools/instrumentation), 2x or more sometimes difficult to map error reports into source Sanitizer (ASan) Very fast instrumentation
 The average slowdown of the instrumented program is ~2x github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers97 2020 Victor Ciura | @ciura_victor
    0 码力 | 135 页 | 27.77 MB | 5 月前
    3
  • pdf文档 机器学习课程-温州大学-13机器学习-人工神经网络

    1x 2x ix N x . . . . . . f y ? = ? ෍ ?=1 ? ???? + ? 6 1.人工神经网络发展历史 1982年,加州理工学院J.J.Hopfield 教授提出了Hopfield神经网络模型 ,引入了计算能量概念,给出了网 络稳定性判断。 离散Hopfield神经网络模型 1T 2T IT N T … … 1x 2x ix nx 线性分类模型。 用 ? ∈ ??×? 表示数据集,用 ? 表示标 签。 需要学习的目标函数是 从一堆输入输出中学习模型参数?和?。  1 w b 2 w iw N w 1x 2x ix N x . . . . . . f y 输入 权重 偏置 求和 求和 输出 ?(?) = sign(?T? + ?) 11 2.感知机算法 感知机算法(Perceptron
    0 码力 | 29 页 | 1.60 MB | 1 年前
    3
  • pdf文档 Julia v1.6.6 Documentation

    = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 20 julia> 2^2x 64 The precedence literal coefficients is slightly lower than that of unary operators such as negation. So -2x is parsed as (-2) * x and √2x is parsed as (√2) * x. However, numeric literal coefficients parse similarly to unary unary operators when combined with exponentiation. For example 2^3x is parsed as 2^(3x), and 2x^3 is parsed as 2*(x^3). Numeric literals also work as coefficients to parenthesized expressions: julia>
    0 码力 | 1324 页 | 4.54 MB | 1 年前
    3
  • pdf文档 Julia 1.6.5 Documentation

    = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 20 julia> 2^2x 64 The precedence literal coefficients is slightly lower than that of unary operators such as negation. So -2x is parsed as (-2) * x and √2x is parsed as (√2) * x. However, numeric literal coefficients parse similarly to unary unary operators when combined with exponentiation. For example 2^3x is parsed as 2^(3x), and 2x^3 is parsed as 2*(x^3). Numeric literals also work as coefficients to parenthesized expressions: julia>
    0 码力 | 1325 页 | 4.54 MB | 1 年前
    3
  • pdf文档 Julia 1.6.7 Documentation

    = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS 20 julia> 2^2x 64 The precedence literal coefficients is slightly lower than that of unary operators such as negation. So -2x is parsed as (-2) * x and √2x is parsed as (√2) * x. However, numeric literal coefficients parse similarly to unary unary operators when combined with exponentiation. For example 2^3x is parsed as 2^(3x), and 2x^3 is parsed as 2*(x^3). Numeric literals also work as coefficients to parenthesized expressions: julia>
    0 码力 | 1324 页 | 4.54 MB | 1 年前
    3
  • pdf文档 Julia 1.6.1 Documentation

    = 3 3 julia> 2x^2 - 3x + 1 10 julia> 1.5x^2 - .5x + 1 13.0 It also makes writing exponential functions more elegant: 22 CHAPTER 4. INTEGERS AND FLOATING-POINT NUMBERS julia> 2^2x 64 The precedence literal coefficients is slightly lower than that of unary operators such as negation. So -2x is parsed as (-2) * x and √2x is parsed as (√2) * x. However, numeric literal coefficients parse similarly to unary unary operators when combined with exponentiation. For example 2^3x is parsed as 2^(3x), and 2x^3 is parsed as 2*(x^3). Numeric literals also work as coefficients to parenthesized expressions: julia>
    0 码力 | 1397 页 | 4.59 MB | 1 年前
    3
共 222 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 23
前往
页
相关搜索词
EffectiveRangestutorialforusingC++2XrangesPyTorchReleaseNotesEfficientDeepLearningBookEDLChapterTechniquesBestPracticesMySQLwithSSDs2020TheYearofSanitizers机器学习课程温州大学13人工神经网络神经网人工神经网络Juliav16.6Documentation1.6
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩